ai-station/.venv/lib/python3.12/site-packages/litellm/llms/ollama/completion/handler.py

125 lines
3.5 KiB
Python
Raw Permalink Normal View History

2025-12-25 14:54:33 +00:00
"""
Ollama /chat/completion calls handled in llm_http_handler.py
[TODO]: migrate embeddings to a base handler as well.
"""
from typing import Any, Dict, List
import litellm
from litellm.types.utils import EmbeddingResponse
def _prepare_ollama_embedding_payload(
model: str, prompts: List[str], optional_params: Dict[str, Any]
) -> Dict[str, Any]:
data: Dict[str, Any] = {"model": model, "input": prompts}
special_optional_params = ["truncate", "options", "keep_alive"]
for k, v in optional_params.items():
if k in special_optional_params:
data[k] = v
else:
data.setdefault("options", {})
if isinstance(data["options"], dict):
data["options"].update({k: v})
return data
def _process_ollama_embedding_response(
response_json: dict,
prompts: List[str],
model: str,
model_response: EmbeddingResponse,
logging_obj: Any,
encoding: Any,
) -> EmbeddingResponse:
output_data = []
embeddings: List[List[float]] = response_json["embeddings"]
for idx, emb in enumerate(embeddings):
output_data.append({"object": "embedding", "index": idx, "embedding": emb})
input_tokens = response_json.get("prompt_eval_count", None)
if input_tokens is None:
if encoding is not None:
input_tokens = len(encoding.encode("".join(prompts)))
if logging_obj:
logging_obj.debug(
"Ollama response missing prompt_eval_count; estimated with encoding."
)
else:
input_tokens = 0
if logging_obj:
logging_obj.warning(
"Missing prompt_eval_count and no encoding provided; defaulted to 0."
)
model_response.object = "list"
model_response.data = output_data
model_response.model = "ollama/" + model
model_response.usage = litellm.Usage(
prompt_tokens=input_tokens,
completion_tokens=0,
total_tokens=input_tokens,
prompt_tokens_details=None,
completion_tokens_details=None,
)
return model_response
async def ollama_aembeddings(
api_base: str,
model: str,
prompts: List[str],
model_response: EmbeddingResponse,
optional_params: dict,
logging_obj: Any,
encoding: Any,
):
if not api_base.endswith("/api/embed"):
api_base += "/api/embed"
data = _prepare_ollama_embedding_payload(model, prompts, optional_params)
response = await litellm.module_level_aclient.post(url=api_base, json=data)
response_json = response.json()
return _process_ollama_embedding_response(
response_json=response_json,
prompts=prompts,
model=model,
model_response=model_response,
logging_obj=logging_obj,
encoding=encoding,
)
def ollama_embeddings(
api_base: str,
model: str,
prompts: List[str],
optional_params: dict,
model_response: EmbeddingResponse,
logging_obj: Any,
encoding: Any = None,
):
if not api_base.endswith("/api/embed"):
api_base += "/api/embed"
data = _prepare_ollama_embedding_payload(model, prompts, optional_params)
response = litellm.module_level_client.post(url=api_base, json=data)
response_json = response.json()
return _process_ollama_embedding_response(
response_json=response_json,
prompts=prompts,
model=model,
model_response=model_response,
logging_obj=logging_obj,
encoding=encoding,
)