ai-station/.venv/lib/python3.12/site-packages/textual/geometry.py

1337 lines
40 KiB
Python
Raw Permalink Normal View History

2025-12-25 14:54:33 +00:00
"""
Functions and classes to manage terminal geometry (anything involving coordinates or dimensions).
"""
from __future__ import annotations
import os
from functools import lru_cache
from operator import attrgetter, itemgetter
from typing import (
TYPE_CHECKING,
Any,
Collection,
Literal,
NamedTuple,
Tuple,
TypeVar,
Union,
cast,
)
from typing_extensions import Final
if TYPE_CHECKING:
from typing_extensions import TypeAlias
SpacingDimensions: TypeAlias = Union[
int, Tuple[int], Tuple[int, int], Tuple[int, int, int, int]
]
"""The valid ways in which you can specify spacing."""
T = TypeVar("T", int, float)
def clamp(value: T, minimum: T, maximum: T) -> T:
"""Restrict a value to a given range.
If `value` is less than the minimum, return the minimum.
If `value` is greater than the maximum, return the maximum.
Otherwise, return `value`.
The `minimum` and `maximum` arguments values may be given in reverse order.
Args:
value: A value.
minimum: Minimum value.
maximum: Maximum value.
Returns:
New value that is not less than the minimum or greater than the maximum.
"""
if minimum > maximum:
# It is common for the min and max to be in non-intuitive order.
# Rather than force the caller to get it right, it is simpler to handle it here.
if value < maximum:
return maximum
if value > minimum:
return minimum
return value
else:
if value < minimum:
return minimum
if value > maximum:
return maximum
return value
class Offset(NamedTuple):
"""A cell offset defined by x and y coordinates.
Offsets are typically relative to the top left of the terminal or other container.
Textual prefers the names `x` and `y`, but you could consider `x` to be the _column_ and `y` to be the _row_.
Offsets support addition, subtraction, multiplication, and negation.
Example:
```python
>>> from textual.geometry import Offset
>>> offset = Offset(3, 2)
>>> offset
Offset(x=3, y=2)
>>> offset += Offset(10, 0)
>>> offset
Offset(x=13, y=2)
>>> -offset
Offset(x=-13, y=-2)
```
"""
x: int = 0
"""Offset in the x-axis (horizontal)"""
y: int = 0
"""Offset in the y-axis (vertical)"""
@property
def is_origin(self) -> bool:
"""Is the offset at (0, 0)?"""
return self == (0, 0)
@property
def clamped(self) -> Offset:
"""This offset with `x` and `y` restricted to values above zero."""
x, y = self
return Offset(0 if x < 0 else x, 0 if y < 0 else y)
@property
def transpose(self) -> tuple[int, int]:
"""A tuple of x and y, in reverse order, i.e. (y, x)."""
x, y = self
return y, x
def __bool__(self) -> bool:
return self != (0, 0)
def __add__(self, other: object) -> Offset:
if isinstance(other, tuple):
_x, _y = self
x, y = other
return Offset(_x + x, _y + y)
return NotImplemented
def __sub__(self, other: object) -> Offset:
if isinstance(other, tuple):
_x, _y = self
x, y = other
return Offset(_x - x, _y - y)
return NotImplemented
def __mul__(self, other: object) -> Offset:
if isinstance(other, (float, int)):
x, y = self
return Offset(int(x * other), int(y * other))
if isinstance(other, tuple):
x, y = self
return Offset(int(x * other[0]), int(y * other[1]))
return NotImplemented
def __neg__(self) -> Offset:
x, y = self
return Offset(-x, -y)
def blend(self, destination: Offset, factor: float) -> Offset:
"""Calculate a new offset on a line between this offset and a destination offset.
Args:
destination: Point where factor would be 1.0.
factor: A value between 0 and 1.0.
Returns:
A new point on a line between self and destination.
"""
x1, y1 = self
x2, y2 = destination
return Offset(
int(x1 + (x2 - x1) * factor),
int(y1 + (y2 - y1) * factor),
)
def get_distance_to(self, other: Offset) -> float:
"""Get the distance to another offset.
Args:
other: An offset.
Returns:
Distance to other offset.
"""
x1, y1 = self
x2, y2 = other
distance: float = ((x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1)) ** 0.5
return distance
def clamp(self, width: int, height: int) -> Offset:
"""Clamp the offset to fit within a rectangle of width x height.
Args:
width: Width to clamp.
height: Height to clamp.
Returns:
A new offset.
"""
x, y = self
return Offset(clamp(x, 0, width - 1), clamp(y, 0, height - 1))
class Size(NamedTuple):
"""The dimensions (width and height) of a rectangular region.
Example:
```python
>>> from textual.geometry import Size
>>> size = Size(2, 3)
>>> size
Size(width=2, height=3)
>>> size.area
6
>>> size + Size(10, 20)
Size(width=12, height=23)
```
"""
width: int = 0
"""The width in cells."""
height: int = 0
"""The height in cells."""
def __bool__(self) -> bool:
"""A Size is Falsy if it has area 0."""
return self.width * self.height != 0
@property
def area(self) -> int:
"""The area occupied by a region of this size."""
return self.width * self.height
@property
def region(self) -> Region:
"""A region of the same size, at the origin."""
width, height = self
return Region(0, 0, width, height)
@property
def line_range(self) -> range:
"""A range object that covers values between 0 and `height`."""
return range(self.height)
def with_width(self, width: int) -> Size:
"""Get a new Size with just the width changed.
Args:
width: New width.
Returns:
New Size instance.
"""
return Size(width, self.height)
def with_height(self, height: int) -> Size:
"""Get a new Size with just the height changed.
Args:
height: New height.
Returns:
New Size instance.
"""
return Size(self.width, height)
def __add__(self, other: object) -> Size:
if isinstance(other, tuple):
width, height = self
width2, height2 = other
return Size(max(0, width + width2), max(0, height + height2))
return NotImplemented
def __sub__(self, other: object) -> Size:
if isinstance(other, tuple):
width, height = self
width2, height2 = other
return Size(max(0, width - width2), max(0, height - height2))
return NotImplemented
def contains(self, x: int, y: int) -> bool:
"""Check if a point is in area defined by the size.
Args:
x: X coordinate.
y: Y coordinate.
Returns:
True if the point is within the region.
"""
width, height = self
return width > x >= 0 and height > y >= 0
def contains_point(self, point: tuple[int, int]) -> bool:
"""Check if a point is in the area defined by the size.
Args:
point: A tuple of x and y coordinates.
Returns:
True if the point is within the region.
"""
x, y = point
width, height = self
return width > x >= 0 and height > y >= 0
def __contains__(self, other: Any) -> bool:
try:
x: int
y: int
x, y = other
except Exception:
raise TypeError(
"Dimensions.__contains__ requires an iterable of two integers"
)
width, height = self
return width > x >= 0 and height > y >= 0
def clamp_offset(self, offset: Offset) -> Offset:
"""Clamp an offset to fit within the width x height.
Args:
offset: An offset.
Returns:
A new offset that will fit inside the dimensions defined in the Size.
"""
return offset.clamp(self.width, self.height)
class Region(NamedTuple):
"""Defines a rectangular region.
A Region consists of a coordinate (x and y) and dimensions (width and height).
```
(x, y)
height
width
```
Example:
```python
>>> from textual.geometry import Region
>>> region = Region(4, 5, 20, 10)
>>> region
Region(x=4, y=5, width=20, height=10)
>>> region.area
200
>>> region.size
Size(width=20, height=10)
>>> region.offset
Offset(x=4, y=5)
>>> region.contains(1, 2)
False
>>> region.contains(10, 8)
True
```
"""
x: int = 0
"""Offset in the x-axis (horizontal)."""
y: int = 0
"""Offset in the y-axis (vertical)."""
width: int = 0
"""The width of the region."""
height: int = 0
"""The height of the region."""
@classmethod
def from_union(cls, regions: Collection[Region]) -> Region:
"""Create a Region from the union of other regions.
Args:
regions: One or more regions.
Returns:
A Region that encloses all other regions.
"""
if not regions:
raise ValueError("At least one region expected")
min_x = min(regions, key=itemgetter(0)).x
max_x = max(regions, key=attrgetter("right")).right
min_y = min(regions, key=itemgetter(1)).y
max_y = max(regions, key=attrgetter("bottom")).bottom
return cls(min_x, min_y, max_x - min_x, max_y - min_y)
@classmethod
def from_corners(cls, x1: int, y1: int, x2: int, y2: int) -> Region:
"""Construct a Region form the top left and bottom right corners.
Args:
x1: Top left x.
y1: Top left y.
x2: Bottom right x.
y2: Bottom right y.
Returns:
A new region.
"""
return cls(x1, y1, x2 - x1, y2 - y1)
@classmethod
def from_offset(cls, offset: tuple[int, int], size: tuple[int, int]) -> Region:
"""Create a region from offset and size.
Args:
offset: Offset (top left point).
size: Dimensions of region.
Returns:
A region instance.
"""
x, y = offset
width, height = size
return cls(x, y, width, height)
@classmethod
def get_scroll_to_visible(
cls, window_region: Region, region: Region, *, top: bool = False
) -> Offset:
"""Calculate the smallest offset required to translate a window so that it contains
another region.
This method is used to calculate the required offset to scroll something into view.
Args:
window_region: The window region.
region: The region to move inside the window.
top: Get offset to top of window.
Returns:
An offset required to add to region to move it inside window_region.
"""
if region in window_region and not top:
# Region is already inside the window, so no need to move it.
return NULL_OFFSET
window_left, window_top, window_right, window_bottom = window_region.corners
region = region.crop_size(window_region.size)
left, top_, right, bottom = region.corners
delta_x = delta_y = 0
if not (
(window_right > left >= window_left)
and (window_right > right >= window_left)
):
# The region does not fit
# The window needs to scroll on the X axis to bring region into view
delta_x = min(
left - window_left,
left - (window_right - region.width),
key=abs,
)
if top:
delta_y = top_ - window_top
elif not (
(window_bottom > top_ >= window_top)
and (window_bottom > bottom >= window_top)
):
# The window needs to scroll on the Y axis to bring region into view
delta_y = min(
top_ - window_top,
top_ - (window_bottom - region.height),
key=abs,
)
return Offset(delta_x, delta_y)
def __bool__(self) -> bool:
"""A Region is considered False when it has no area."""
_, _, width, height = self
return width * height > 0
@property
def column_span(self) -> tuple[int, int]:
"""A pair of integers for the start and end columns (x coordinates) in this region.
The end value is *exclusive*.
"""
return (self.x, self.x + self.width)
@property
def line_span(self) -> tuple[int, int]:
"""A pair of integers for the start and end lines (y coordinates) in this region.
The end value is *exclusive*.
"""
return (self.y, self.y + self.height)
@property
def right(self) -> int:
"""Maximum X value (non inclusive)."""
return self.x + self.width
@property
def bottom(self) -> int:
"""Maximum Y value (non inclusive)."""
return self.y + self.height
@property
def area(self) -> int:
"""The area under the region."""
return self.width * self.height
@property
def offset(self) -> Offset:
"""The top left corner of the region.
Returns:
An offset.
"""
return Offset(*self[:2])
@property
def center(self) -> tuple[float, float]:
"""The center of the region.
Note, that this does *not* return an `Offset`, because the center may not be an integer coordinate.
Returns:
Tuple of floats.
"""
x, y, width, height = self
return (x + width / 2.0, y + height / 2.0)
@property
def bottom_left(self) -> Offset:
"""Bottom left offset of the region.
Returns:
An offset.
"""
x, y, _width, height = self
return Offset(x, y + height)
@property
def top_right(self) -> Offset:
"""Top right offset of the region.
Returns:
An offset.
"""
x, y, width, _height = self
return Offset(x + width, y)
@property
def bottom_right(self) -> Offset:
"""Bottom right offset of the region.
Returns:
An offset.
"""
x, y, width, height = self
return Offset(x + width, y + height)
@property
def bottom_right_inclusive(self) -> Offset:
"""Bottom right corner of the region, within its boundaries."""
x, y, width, height = self
return Offset(x + width - 1, y + height - 1)
@property
def size(self) -> Size:
"""Get the size of the region."""
return Size(*self[2:])
@property
def corners(self) -> tuple[int, int, int, int]:
"""The top left and bottom right coordinates as a tuple of four integers."""
x, y, width, height = self
return x, y, x + width, y + height
@property
def column_range(self) -> range:
"""A range object for X coordinates."""
return range(self.x, self.x + self.width)
@property
def line_range(self) -> range:
"""A range object for Y coordinates."""
return range(self.y, self.y + self.height)
@property
def reset_offset(self) -> Region:
"""An region of the same size at (0, 0).
Returns:
A region at the origin.
"""
_, _, width, height = self
return Region(0, 0, width, height)
def __add__(self, other: object) -> Region:
if isinstance(other, tuple):
ox, oy = other
x, y, width, height = self
return Region(x + ox, y + oy, width, height)
return NotImplemented
def __sub__(self, other: object) -> Region:
if isinstance(other, tuple):
ox, oy = other
x, y, width, height = self
return Region(x - ox, y - oy, width, height)
return NotImplemented
def get_spacing_between(self, region: Region) -> Spacing:
"""Get spacing between two regions.
Args:
region: Another region.
Returns:
Spacing that if subtracted from `self` produces `region`.
"""
return Spacing(
region.y - self.y,
self.right - region.right,
self.bottom - region.bottom,
region.x - self.x,
)
def at_offset(self, offset: tuple[int, int]) -> Region:
"""Get a new Region with the same size at a given offset.
Args:
offset: An offset.
Returns:
New Region with adjusted offset.
"""
x, y = offset
_x, _y, width, height = self
return Region(x, y, width, height)
def crop_size(self, size: tuple[int, int]) -> Region:
"""Get a region with the same offset, with a size no larger than `size`.
Args:
size: Maximum width and height (WIDTH, HEIGHT).
Returns:
New region that could fit within `size`.
"""
x, y, width1, height1 = self
width2, height2 = size
return Region(x, y, min(width1, width2), min(height1, height2))
def expand(self, size: tuple[int, int]) -> Region:
"""Increase the size of the region by adding a border.
Args:
size: Additional width and height.
Returns:
A new region.
"""
expand_width, expand_height = size
x, y, width, height = self
return Region(
x - expand_width,
y - expand_height,
width + expand_width * 2,
height + expand_height * 2,
)
@lru_cache(maxsize=1024)
def overlaps(self, other: Region) -> bool:
"""Check if another region overlaps this region.
Args:
other: A Region.
Returns:
True if other region shares any cells with this region.
"""
x, y, x2, y2 = self.corners
ox, oy, ox2, oy2 = other.corners
return ((x2 > ox >= x) or (x2 > ox2 > x) or (ox < x and ox2 >= x2)) and (
(y2 > oy >= y) or (y2 > oy2 > y) or (oy < y and oy2 >= y2)
)
def contains(self, x: int, y: int) -> bool:
"""Check if a point is in the region.
Args:
x: X coordinate.
y: Y coordinate.
Returns:
True if the point is within the region.
"""
self_x, self_y, width, height = self
return (self_x + width > x >= self_x) and (self_y + height > y >= self_y)
def contains_point(self, point: tuple[int, int]) -> bool:
"""Check if a point is in the region.
Args:
point: A tuple of x and y coordinates.
Returns:
True if the point is within the region.
"""
x1, y1, x2, y2 = self.corners
try:
ox, oy = point
except Exception:
raise TypeError(f"a tuple of two integers is required, not {point!r}")
return (x2 > ox >= x1) and (y2 > oy >= y1)
@lru_cache(maxsize=1024)
def contains_region(self, other: Region) -> bool:
"""Check if a region is entirely contained within this region.
Args:
other: A region.
Returns:
True if the other region fits perfectly within this region.
"""
x1, y1, x2, y2 = self.corners
ox, oy, ox2, oy2 = other.corners
return (
(x2 >= ox >= x1)
and (y2 >= oy >= y1)
and (x2 >= ox2 >= x1)
and (y2 >= oy2 >= y1)
)
@lru_cache(maxsize=1024)
def translate(self, offset: tuple[int, int]) -> Region:
"""Move the offset of the Region.
Args:
offset: Offset to add to region.
Returns:
A new region shifted by (x, y).
"""
self_x, self_y, width, height = self
offset_x, offset_y = offset
return Region(self_x + offset_x, self_y + offset_y, width, height)
@lru_cache(maxsize=4096)
def __contains__(self, other: Any) -> bool:
"""Check if a point is in this region."""
if isinstance(other, Region):
return self.contains_region(other)
else:
try:
return self.contains_point(other)
except TypeError:
return False
def clip(self, width: int, height: int) -> Region:
"""Clip this region to fit within width, height.
Args:
width: Width of bounds.
height: Height of bounds.
Returns:
Clipped region.
"""
x1, y1, x2, y2 = self.corners
_clamp = clamp
new_region = Region.from_corners(
_clamp(x1, 0, width),
_clamp(y1, 0, height),
_clamp(x2, 0, width),
_clamp(y2, 0, height),
)
return new_region
@lru_cache(maxsize=4096)
def grow(self, margin: tuple[int, int, int, int]) -> Region:
"""Grow a region by adding spacing.
Args:
margin: Grow space by `(<top>, <right>, <bottom>, <left>)`.
Returns:
New region.
"""
if not any(margin):
return self
top, right, bottom, left = margin
x, y, width, height = self
return Region(
x=x - left,
y=y - top,
width=max(0, width + left + right),
height=max(0, height + top + bottom),
)
@lru_cache(maxsize=4096)
def shrink(self, margin: tuple[int, int, int, int]) -> Region:
"""Shrink a region by subtracting spacing.
Args:
margin: Shrink space by `(<top>, <right>, <bottom>, <left>)`.
Returns:
The new, smaller region.
"""
if not any(margin):
return self
top, right, bottom, left = margin
x, y, width, height = self
return Region(
x=x + left,
y=y + top,
width=max(0, width - (left + right)),
height=max(0, height - (top + bottom)),
)
@lru_cache(maxsize=4096)
def intersection(self, region: Region) -> Region:
"""Get the overlapping portion of the two regions.
Args:
region: A region that overlaps this region.
Returns:
A new region that covers when the two regions overlap.
"""
# Unrolled because this method is used a lot
x1, y1, w1, h1 = self
cx1, cy1, w2, h2 = region
x2 = x1 + w1
y2 = y1 + h1
cx2 = cx1 + w2
cy2 = cy1 + h2
rx1 = cx2 if x1 > cx2 else (cx1 if x1 < cx1 else x1)
ry1 = cy2 if y1 > cy2 else (cy1 if y1 < cy1 else y1)
rx2 = cx2 if x2 > cx2 else (cx1 if x2 < cx1 else x2)
ry2 = cy2 if y2 > cy2 else (cy1 if y2 < cy1 else y2)
return Region(rx1, ry1, rx2 - rx1, ry2 - ry1)
@lru_cache(maxsize=4096)
def union(self, region: Region) -> Region:
"""Get the smallest region that contains both regions.
Args:
region: Another region.
Returns:
An optimally sized region to cover both regions.
"""
x1, y1, x2, y2 = self.corners
ox1, oy1, ox2, oy2 = region.corners
union_region = self.from_corners(
min(x1, ox1), min(y1, oy1), max(x2, ox2), max(y2, oy2)
)
return union_region
@lru_cache(maxsize=1024)
def split(self, cut_x: int, cut_y: int) -> tuple[Region, Region, Region, Region]:
"""Split a region into 4 from given x and y offsets (cuts).
```
cut_x
0 1
cut_y
2 3
```
Args:
cut_x: Offset from self.x where the cut should be made. If negative, the cut
is taken from the right edge.
cut_y: Offset from self.y where the cut should be made. If negative, the cut
is taken from the lower edge.
Returns:
Four new regions which add up to the original (self).
"""
x, y, width, height = self
if cut_x < 0:
cut_x = width + cut_x
if cut_y < 0:
cut_y = height + cut_y
_Region = Region
return (
_Region(x, y, cut_x, cut_y),
_Region(x + cut_x, y, width - cut_x, cut_y),
_Region(x, y + cut_y, cut_x, height - cut_y),
_Region(x + cut_x, y + cut_y, width - cut_x, height - cut_y),
)
@lru_cache(maxsize=1024)
def split_vertical(self, cut: int) -> tuple[Region, Region]:
"""Split a region into two, from a given x offset.
```
cut
0 1
```
Args:
cut: An offset from self.x where the cut should be made. If cut is negative,
it is taken from the right edge.
Returns:
Two regions, which add up to the original (self).
"""
x, y, width, height = self
if cut < 0:
cut = width + cut
return (
Region(x, y, cut, height),
Region(x + cut, y, width - cut, height),
)
@lru_cache(maxsize=1024)
def split_horizontal(self, cut: int) -> tuple[Region, Region]:
"""Split a region into two, from a given y offset.
```
0
cut
1
```
Args:
cut: An offset from self.y where the cut should be made. May be negative,
for the offset to start from the lower edge.
Returns:
Two regions, which add up to the original (self).
"""
x, y, width, height = self
if cut < 0:
cut = height + cut
return (
Region(x, y, width, cut),
Region(x, y + cut, width, height - cut),
)
def translate_inside(
self, container: Region, x_axis: bool = True, y_axis: bool = True
) -> Region:
"""Translate this region, so it fits within a container.
This will ensure that there is as little overlap as possible.
The top left of the returned region is guaranteed to be within the container.
```
container container
return
self
```
Args:
container: A container region.
x_axis: Allow translation of X axis.
y_axis: Allow translation of Y axis.
Returns:
A new region with same dimensions that fits with inside container.
"""
x1, y1, width1, height1 = container
x2, y2, width2, height2 = self
return Region(
max(min(x2, x1 + width1 - width2), x1) if x_axis else x2,
max(min(y2, y1 + height1 - height2), y1) if y_axis else y2,
width2,
height2,
)
def inflect(
self, x_axis: int = +1, y_axis: int = +1, margin: Spacing | None = None
) -> Region:
"""Inflect a region around one or both axis.
The `x_axis` and `y_axis` parameters define which direction to move the region.
A positive value will move the region right or down, a negative value will move
the region left or up. A value of `0` will leave that axis unmodified.
If a margin is provided, it will add space between the resulting region.
Note that if margin is specified it *overlaps*, so the space will be the maximum
of two edges, and not the total.
```
Self
Result
```
Args:
x_axis: +1 to inflect in the positive direction, -1 to inflect in the negative direction.
y_axis: +1 to inflect in the positive direction, -1 to inflect in the negative direction.
margin: Additional margin.
Returns:
A new region.
"""
inflect_margin = NULL_SPACING if margin is None else margin
x, y, width, height = self
if x_axis:
x += (width + inflect_margin.max_width) * x_axis
if y_axis:
y += (height + inflect_margin.max_height) * y_axis
return Region(x, y, width, height)
def constrain(
self,
constrain_x: Literal["none", "inside", "inflect"],
constrain_y: Literal["none", "inside", "inflect"],
margin: Spacing,
container: Region,
) -> Region:
"""Constrain a region to fit within a container, using different methods per axis.
Args:
constrain_x: Constrain method for the X-axis.
constrain_y: Constrain method for the Y-axis.
margin: Margin to maintain around region.
container: Container to constrain to.
Returns:
New widget, that fits inside the container (if possible).
"""
margin_region = self.grow(margin)
region = self
def compare_span(
span_start: int, span_end: int, container_start: int, container_end: int
) -> int:
"""Compare a span with a container
Args:
span_start: Start of the span.
span_end: end of the span.
container_start: Start of the container.
container_end: End of the container.
Returns:
0 if the span fits, -1 if it is less that the container, otherwise +1
"""
if span_start >= container_start and span_end <= container_end:
return 0
if span_start < container_start:
return -1
return +1
# Apply any inflected constraints
if constrain_x == "inflect" or constrain_y == "inflect":
region = region.inflect(
(
-compare_span(
margin_region.x,
margin_region.right,
container.x,
container.right,
)
if constrain_x == "inflect"
else 0
),
(
-compare_span(
margin_region.y,
margin_region.bottom,
container.y,
container.bottom,
)
if constrain_y == "inflect"
else 0
),
margin,
)
# Apply translate inside constrains
# Note this is also applied, if a previous inflect constrained has been applied
# This is so that the origin is always inside the container
region = region.translate_inside(
container.shrink(margin),
constrain_x != "none",
constrain_y != "none",
)
return region
class Spacing(NamedTuple):
"""Stores spacing around a widget, such as padding and border.
Spacing is defined by four integers for the space at the top, right, bottom, and left of a region.
```
top
left right
bottom
```
Example:
```python
>>> from textual.geometry import Region, Spacing
>>> region = Region(2, 3, 20, 10)
>>> spacing = Spacing(1, 2, 3, 4)
>>> region.grow(spacing)
Region(x=-2, y=2, width=26, height=14)
>>> region.shrink(spacing)
Region(x=6, y=4, width=14, height=6)
>>> spacing.css
'1 2 3 4'
```
"""
top: int = 0
"""Space from the top of a region."""
right: int = 0
"""Space from the right of a region."""
bottom: int = 0
"""Space from the bottom of a region."""
left: int = 0
"""Space from the left of a region."""
def __bool__(self) -> bool:
return self != (0, 0, 0, 0)
@property
def width(self) -> int:
"""Total space in the x axis."""
return self.left + self.right
@property
def height(self) -> int:
"""Total space in the y axis."""
return self.top + self.bottom
@property
def max_width(self) -> int:
"""The space between regions in the X direction if margins overlap, i.e. `max(self.left, self.right)`."""
_top, right, _bottom, left = self
return left if left > right else right
@property
def max_height(self) -> int:
"""The space between regions in the Y direction if margins overlap, i.e. `max(self.top, self.bottom)`."""
top, _right, bottom, _left = self
return top if top > bottom else bottom
@property
def top_left(self) -> tuple[int, int]:
"""A pair of integers for the left, and top space."""
return (self.left, self.top)
@property
def bottom_right(self) -> tuple[int, int]:
"""A pair of integers for the right, and bottom space."""
return (self.right, self.bottom)
@property
def totals(self) -> tuple[int, int]:
"""A pair of integers for the total horizontal and vertical space."""
top, right, bottom, left = self
return (left + right, top + bottom)
@property
def css(self) -> str:
"""A string containing the spacing in CSS format.
For example: "1" or "2 4" or "4 2 8 2".
"""
top, right, bottom, left = self
if top == right == bottom == left:
return f"{top}"
if (top, right) == (bottom, left):
return f"{top} {right}"
else:
return f"{top} {right} {bottom} {left}"
@classmethod
def unpack(cls, pad: SpacingDimensions) -> Spacing:
"""Unpack padding specified in CSS style.
Args:
pad: An integer, or tuple of 1, 2, or 4 integers.
Raises:
ValueError: If `pad` is an invalid value.
Returns:
New Spacing object.
"""
if isinstance(pad, int):
return cls(pad, pad, pad, pad)
pad_len = len(pad)
if pad_len == 1:
_pad = pad[0]
return cls(_pad, _pad, _pad, _pad)
if pad_len == 2:
pad_top, pad_right = cast(Tuple[int, int], pad)
return cls(pad_top, pad_right, pad_top, pad_right)
if pad_len == 4:
top, right, bottom, left = cast(Tuple[int, int, int, int], pad)
return cls(top, right, bottom, left)
raise ValueError(
f"1, 2 or 4 integers required for spacing properties; {pad_len} given"
)
@classmethod
def vertical(cls, amount: int) -> Spacing:
"""Construct a Spacing with a given amount of spacing on vertical edges,
and no horizontal spacing.
Args:
amount: The magnitude of spacing to apply to vertical edges.
Returns:
`Spacing(amount, 0, amount, 0)`
"""
return Spacing(amount, 0, amount, 0)
@classmethod
def horizontal(cls, amount: int) -> Spacing:
"""Construct a Spacing with a given amount of spacing on horizontal edges,
and no vertical spacing.
Args:
amount: The magnitude of spacing to apply to horizontal edges.
Returns:
`Spacing(0, amount, 0, amount)`
"""
return Spacing(0, amount, 0, amount)
@classmethod
def all(cls, amount: int) -> Spacing:
"""Construct a Spacing with a given amount of spacing on all edges.
Args:
amount: The magnitude of spacing to apply to all edges.
Returns:
`Spacing(amount, amount, amount, amount)`
"""
return Spacing(amount, amount, amount, amount)
def __add__(self, other: object) -> Spacing:
if isinstance(other, tuple):
top1, right1, bottom1, left1 = self
top2, right2, bottom2, left2 = other
return Spacing(
top1 + top2, right1 + right2, bottom1 + bottom2, left1 + left2
)
return NotImplemented
def __sub__(self, other: object) -> Spacing:
if isinstance(other, tuple):
top1, right1, bottom1, left1 = self
top2, right2, bottom2, left2 = other
return Spacing(
top1 - top2, right1 - right2, bottom1 - bottom2, left1 - left2
)
return NotImplemented
def grow_maximum(self, other: Spacing) -> Spacing:
"""Grow spacing with a maximum.
Args:
other: Spacing object.
Returns:
New spacing where the values are maximum of the two values.
"""
top, right, bottom, left = self
other_top, other_right, other_bottom, other_left = other
return Spacing(
max(top, other_top),
max(right, other_right),
max(bottom, other_bottom),
max(left, other_left),
)
if not TYPE_CHECKING and os.environ.get("TEXTUAL_SPEEDUPS", "1") == "1":
try:
from textual_speedups import Offset, Region, Size, Spacing
except ImportError:
pass
NULL_OFFSET: Final = Offset(0, 0)
"""An [offset][textual.geometry.Offset] constant for (0, 0)."""
NULL_REGION: Final = Region(0, 0, 0, 0)
"""A [Region][textual.geometry.Region] constant for a null region (at the origin, with both width and height set to zero)."""
NULL_SIZE: Final = Size(0, 0)
"""A [Size][textual.geometry.Size] constant for a null size (with zero area)."""
NULL_SPACING: Final = Spacing(0, 0, 0, 0)
"""A [Spacing][textual.geometry.Spacing] constant for no space."""