ai-station/.venv/lib/python3.12/site-packages/litellm/responses/main.py

992 lines
37 KiB
Python
Raw Normal View History

2025-12-25 14:54:33 +00:00
import asyncio
import contextvars
from functools import partial
from typing import Any, Coroutine, Dict, Iterable, List, Literal, Optional, Union
import httpx
import litellm
from litellm.constants import request_timeout
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
from litellm.llms.base_llm.responses.transformation import BaseResponsesAPIConfig
from litellm.llms.custom_httpx.llm_http_handler import BaseLLMHTTPHandler
from litellm.responses.litellm_completion_transformation.handler import (
LiteLLMCompletionTransformationHandler,
)
from litellm.responses.utils import ResponsesAPIRequestUtils
from litellm.types.llms.openai import (
PromptObject,
Reasoning,
ResponseIncludable,
ResponseInputParam,
ResponsesAPIOptionalRequestParams,
ResponsesAPIResponse,
ResponseTextConfigParam,
ToolChoice,
ToolParam,
)
from litellm.types.responses.main import *
from litellm.types.router import GenericLiteLLMParams
from litellm.utils import ProviderConfigManager, client
from .streaming_iterator import BaseResponsesAPIStreamingIterator
####### ENVIRONMENT VARIABLES ###################
# Initialize any necessary instances or variables here
base_llm_http_handler = BaseLLMHTTPHandler()
litellm_completion_transformation_handler = LiteLLMCompletionTransformationHandler()
#################################################
def mock_responses_api_response(
mock_response: str = "In a peaceful grove beneath a silver moon, a unicorn named Lumina discovered a hidden pool that reflected the stars. As she dipped her horn into the water, the pool began to shimmer, revealing a pathway to a magical realm of endless night skies. Filled with wonder, Lumina whispered a wish for all who dream to find their own hidden magic, and as she glanced back, her hoofprints sparkled like stardust.",
):
return ResponsesAPIResponse(
**{ # type: ignore
"id": "resp_67ccd2bed1ec8190b14f964abc0542670bb6a6b452d3795b",
"object": "response",
"created_at": 1741476542,
"status": "completed",
"error": None,
"incomplete_details": None,
"instructions": None,
"max_output_tokens": None,
"model": "gpt-4.1-2025-04-14",
"output": [
{
"type": "message",
"id": "msg_67ccd2bf17f0819081ff3bb2cf6508e60bb6a6b452d3795b",
"status": "completed",
"role": "assistant",
"content": [
{
"type": "output_text",
"text": mock_response,
"annotations": [],
}
],
}
],
"parallel_tool_calls": True,
"previous_response_id": None,
"reasoning": {"effort": None, "summary": None},
"store": True,
"temperature": 1.0,
"text": {"format": {"type": "text"}},
"tool_choice": "auto",
"tools": [],
"top_p": 1.0,
"truncation": "disabled",
"usage": {
"input_tokens": 36,
"input_tokens_details": {"cached_tokens": 0},
"output_tokens": 87,
"output_tokens_details": {"reasoning_tokens": 0},
"total_tokens": 123,
},
"user": None,
"metadata": {},
}
)
async def aresponses_api_with_mcp(
input: Union[str, ResponseInputParam],
model: str,
include: Optional[List[ResponseIncludable]] = None,
instructions: Optional[str] = None,
max_output_tokens: Optional[int] = None,
prompt: Optional[PromptObject] = None,
metadata: Optional[Dict[str, Any]] = None,
parallel_tool_calls: Optional[bool] = None,
previous_response_id: Optional[str] = None,
reasoning: Optional[Reasoning] = None,
store: Optional[bool] = None,
background: Optional[bool] = None,
stream: Optional[bool] = None,
temperature: Optional[float] = None,
text: Optional[ResponseTextConfigParam] = None,
tool_choice: Optional[ToolChoice] = None,
tools: Optional[Iterable[ToolParam]] = None,
top_p: Optional[float] = None,
truncation: Optional[Literal["auto", "disabled"]] = None,
user: Optional[str] = None,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Optional[Dict[str, Any]] = None,
extra_query: Optional[Dict[str, Any]] = None,
extra_body: Optional[Dict[str, Any]] = None,
timeout: Optional[Union[float, httpx.Timeout]] = None,
# LiteLLM specific params,
custom_llm_provider: Optional[str] = None,
**kwargs,
) -> Union[ResponsesAPIResponse, BaseResponsesAPIStreamingIterator]:
"""
Async version of responses API with MCP integration.
When MCP tools with server_url="litellm_proxy" are provided, this function will:
1. Get available tools from the MCP server manager
2. Insert the tools into the messages/input
3. Call the standard responses API
4. If require_approval="never" and tool calls are returned, automatically execute them
"""
from litellm.responses.mcp.litellm_proxy_mcp_handler import (
LiteLLM_Proxy_MCP_Handler,
)
# Parse MCP tools and separate from other tools
mcp_tools_with_litellm_proxy, other_tools = LiteLLM_Proxy_MCP_Handler._parse_mcp_tools(tools)
# Get available tools from MCP manager if we have MCP tools
openai_tools = []
mcp_tools_fetched = []
if mcp_tools_with_litellm_proxy:
user_api_key_auth = kwargs.get("user_api_key_auth")
mcp_tools_fetched = await LiteLLM_Proxy_MCP_Handler._get_mcp_tools_from_manager(user_api_key_auth)
openai_tools = LiteLLM_Proxy_MCP_Handler._transform_mcp_tools_to_openai(mcp_tools_fetched)
# Combine with other tools
all_tools = openai_tools + other_tools if (openai_tools or other_tools) else None
# Prepare call parameters for reuse
call_params = {
"include": include,
"instructions": instructions,
"max_output_tokens": max_output_tokens,
"prompt": prompt,
"metadata": metadata,
"parallel_tool_calls": parallel_tool_calls,
"reasoning": reasoning,
"store": store,
"background": background,
"stream": stream,
"temperature": temperature,
"text": text,
"tool_choice": tool_choice,
"top_p": top_p,
"truncation": truncation,
"user": user,
"extra_headers": extra_headers,
"extra_query": extra_query,
"extra_body": extra_body,
"timeout": timeout,
"custom_llm_provider": custom_llm_provider,
**kwargs,
}
# Make initial response API call
# TODO: if should auto-execute is True, then this first response should not be streamed
response = await aresponses(
input=input,
model=model,
tools=all_tools,
previous_response_id=previous_response_id,
**call_params
)
# Check if we need to auto-execute tool calls (only for non-streaming responses)
if (mcp_tools_with_litellm_proxy and
isinstance(response, ResponsesAPIResponse) and
LiteLLM_Proxy_MCP_Handler._should_auto_execute_tools(mcp_tools_with_litellm_proxy=mcp_tools_with_litellm_proxy)): # type: ignore
tool_calls = LiteLLM_Proxy_MCP_Handler._extract_tool_calls_from_response(response=response)
if tool_calls:
user_api_key_auth = kwargs.get("litellm_metadata", {}).get("user_api_key_auth")
tool_results = await LiteLLM_Proxy_MCP_Handler._execute_tool_calls(tool_calls=tool_calls, user_api_key_auth=user_api_key_auth)
if tool_results:
follow_up_input = LiteLLM_Proxy_MCP_Handler._create_follow_up_input(
response=response,
tool_results=tool_results,
original_input=input
)
final_response = await LiteLLM_Proxy_MCP_Handler._make_follow_up_call(
follow_up_input=follow_up_input,
model=model,
all_tools=all_tools,
response_id=response.id,
**call_params
)
# Add custom output elements to the final response
if isinstance(final_response, ResponsesAPIResponse):
final_response = LiteLLM_Proxy_MCP_Handler._add_mcp_output_elements_to_response(
response=final_response,
mcp_tools_fetched=mcp_tools_fetched,
tool_results=tool_results
)
return final_response
return response
@client
async def aresponses(
input: Union[str, ResponseInputParam],
model: str,
include: Optional[List[ResponseIncludable]] = None,
instructions: Optional[str] = None,
max_output_tokens: Optional[int] = None,
prompt: Optional[PromptObject] = None,
metadata: Optional[Dict[str, Any]] = None,
parallel_tool_calls: Optional[bool] = None,
previous_response_id: Optional[str] = None,
reasoning: Optional[Reasoning] = None,
store: Optional[bool] = None,
background: Optional[bool] = None,
stream: Optional[bool] = None,
temperature: Optional[float] = None,
text: Optional[ResponseTextConfigParam] = None,
tool_choice: Optional[ToolChoice] = None,
tools: Optional[Iterable[ToolParam]] = None,
top_p: Optional[float] = None,
truncation: Optional[Literal["auto", "disabled"]] = None,
user: Optional[str] = None,
service_tier: Optional[str] = None,
safety_identifier: Optional[str] = None,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Optional[Dict[str, Any]] = None,
extra_query: Optional[Dict[str, Any]] = None,
extra_body: Optional[Dict[str, Any]] = None,
timeout: Optional[Union[float, httpx.Timeout]] = None,
# LiteLLM specific params,
custom_llm_provider: Optional[str] = None,
**kwargs,
) -> Union[ResponsesAPIResponse, BaseResponsesAPIStreamingIterator]:
"""
Async: Handles responses API requests by reusing the synchronous function
"""
local_vars = locals()
try:
loop = asyncio.get_event_loop()
kwargs["aresponses"] = True
# get custom llm provider so we can use this for mapping exceptions
if custom_llm_provider is None:
_, custom_llm_provider, _, _ = litellm.get_llm_provider(
model=model, api_base=local_vars.get("base_url", None)
)
func = partial(
responses,
input=input,
model=model,
include=include,
instructions=instructions,
max_output_tokens=max_output_tokens,
prompt=prompt,
metadata=metadata,
parallel_tool_calls=parallel_tool_calls,
previous_response_id=previous_response_id,
reasoning=reasoning,
store=store,
background=background,
stream=stream,
temperature=temperature,
text=text,
tool_choice=tool_choice,
tools=tools,
top_p=top_p,
truncation=truncation,
user=user,
extra_headers=extra_headers,
extra_query=extra_query,
extra_body=extra_body,
timeout=timeout,
custom_llm_provider=custom_llm_provider,
service_tier=service_tier,
safety_identifier=safety_identifier,
**kwargs,
)
ctx = contextvars.copy_context()
func_with_context = partial(ctx.run, func)
init_response = await loop.run_in_executor(None, func_with_context)
if asyncio.iscoroutine(init_response):
response = await init_response
else:
response = init_response
# Update the responses_api_response_id with the model_id
if isinstance(response, ResponsesAPIResponse):
response = ResponsesAPIRequestUtils._update_responses_api_response_id_with_model_id(
responses_api_response=response,
litellm_metadata=kwargs.get("litellm_metadata", {}),
custom_llm_provider=custom_llm_provider,
)
if response is None:
raise ValueError(f"Got an unexpected None response from the Responses API: {response}")
return response
except Exception as e:
raise litellm.exception_type(
model=model,
custom_llm_provider=custom_llm_provider,
original_exception=e,
completion_kwargs=local_vars,
extra_kwargs=kwargs,
)
@client
def responses(
input: Union[str, ResponseInputParam],
model: str,
include: Optional[List[ResponseIncludable]] = None,
instructions: Optional[str] = None,
max_output_tokens: Optional[int] = None,
prompt: Optional[PromptObject] = None,
metadata: Optional[Dict[str, Any]] = None,
parallel_tool_calls: Optional[bool] = None,
previous_response_id: Optional[str] = None,
reasoning: Optional[Reasoning] = None,
store: Optional[bool] = None,
background: Optional[bool] = None,
stream: Optional[bool] = None,
temperature: Optional[float] = None,
text: Optional[ResponseTextConfigParam] = None,
tool_choice: Optional[ToolChoice] = None,
tools: Optional[Iterable[ToolParam]] = None,
top_p: Optional[float] = None,
truncation: Optional[Literal["auto", "disabled"]] = None,
user: Optional[str] = None,
service_tier: Optional[str] = None,
safety_identifier: Optional[str] = None,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Optional[Dict[str, Any]] = None,
extra_query: Optional[Dict[str, Any]] = None,
extra_body: Optional[Dict[str, Any]] = None,
timeout: Optional[Union[float, httpx.Timeout]] = None,
# LiteLLM specific params,
custom_llm_provider: Optional[str] = None,
**kwargs,
):
"""
Synchronous version of the Responses API.
Uses the synchronous HTTP handler to make requests.
"""
from litellm.responses.mcp.litellm_proxy_mcp_handler import (
LiteLLM_Proxy_MCP_Handler,
)
local_vars = locals()
try:
litellm_logging_obj: LiteLLMLoggingObj = kwargs.get("litellm_logging_obj") # type: ignore
litellm_call_id: Optional[str] = kwargs.get("litellm_call_id", None)
_is_async = kwargs.pop("aresponses", False) is True
# get llm provider logic
litellm_params = GenericLiteLLMParams(**kwargs)
#########################################################
# MOCK RESPONSE LOGIC
#########################################################
if litellm_params.mock_response and isinstance(
litellm_params.mock_response, str
):
return mock_responses_api_response(
mock_response=litellm_params.mock_response
)
(
model,
custom_llm_provider,
dynamic_api_key,
dynamic_api_base,
) = litellm.get_llm_provider(
model=model,
custom_llm_provider=custom_llm_provider,
api_base=litellm_params.api_base,
api_key=litellm_params.api_key,
)
#########################################################
# Native MCP Responses API
#########################################################
if LiteLLM_Proxy_MCP_Handler._should_use_litellm_mcp_gateway(tools=tools):
return aresponses_api_with_mcp(
**local_vars,
)
# get provider config
responses_api_provider_config: Optional[BaseResponsesAPIConfig] = (
ProviderConfigManager.get_provider_responses_api_config(
model=model,
provider=litellm.LlmProviders(custom_llm_provider),
)
)
local_vars.update(kwargs)
# Get ResponsesAPIOptionalRequestParams with only valid parameters
response_api_optional_params: ResponsesAPIOptionalRequestParams = (
ResponsesAPIRequestUtils.get_requested_response_api_optional_param(
local_vars
)
)
if responses_api_provider_config is None:
return litellm_completion_transformation_handler.response_api_handler(
model=model,
input=input,
responses_api_request=response_api_optional_params,
custom_llm_provider=custom_llm_provider,
_is_async=_is_async,
stream=stream,
**kwargs,
)
# Get optional parameters for the responses API
responses_api_request_params: Dict = (
ResponsesAPIRequestUtils.get_optional_params_responses_api(
model=model,
responses_api_provider_config=responses_api_provider_config,
response_api_optional_params=response_api_optional_params,
)
)
# Pre Call logging
litellm_logging_obj.update_environment_variables(
model=model,
user=user,
optional_params=dict(responses_api_request_params),
litellm_params={
"litellm_call_id": litellm_call_id,
**responses_api_request_params,
},
custom_llm_provider=custom_llm_provider,
)
# Call the handler with _is_async flag instead of directly calling the async handler
response = base_llm_http_handler.response_api_handler(
model=model,
input=input,
responses_api_provider_config=responses_api_provider_config,
response_api_optional_request_params=responses_api_request_params,
custom_llm_provider=custom_llm_provider,
litellm_params=litellm_params,
logging_obj=litellm_logging_obj,
extra_headers=extra_headers,
extra_body=extra_body,
timeout=timeout or request_timeout,
_is_async=_is_async,
client=kwargs.get("client"),
fake_stream=responses_api_provider_config.should_fake_stream(
model=model, stream=stream, custom_llm_provider=custom_llm_provider
),
litellm_metadata=kwargs.get("litellm_metadata", {}),
)
# Update the responses_api_response_id with the model_id
if isinstance(response, ResponsesAPIResponse):
response = ResponsesAPIRequestUtils._update_responses_api_response_id_with_model_id(
responses_api_response=response,
litellm_metadata=kwargs.get("litellm_metadata", {}),
custom_llm_provider=custom_llm_provider,
)
return response
except Exception as e:
raise litellm.exception_type(
model=model,
custom_llm_provider=custom_llm_provider,
original_exception=e,
completion_kwargs=local_vars,
extra_kwargs=kwargs,
)
@client
async def adelete_responses(
response_id: str,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Optional[Dict[str, Any]] = None,
extra_query: Optional[Dict[str, Any]] = None,
extra_body: Optional[Dict[str, Any]] = None,
timeout: Optional[Union[float, httpx.Timeout]] = None,
# LiteLLM specific params,
custom_llm_provider: Optional[str] = None,
**kwargs,
) -> DeleteResponseResult:
"""
Async version of the DELETE Responses API
DELETE /v1/responses/{response_id} endpoint in the responses API
"""
local_vars = locals()
try:
loop = asyncio.get_event_loop()
kwargs["adelete_responses"] = True
# get custom llm provider from response_id
decoded_response_id: DecodedResponseId = (
ResponsesAPIRequestUtils._decode_responses_api_response_id(
response_id=response_id,
)
)
response_id = decoded_response_id.get("response_id") or response_id
custom_llm_provider = (
decoded_response_id.get("custom_llm_provider") or custom_llm_provider
)
func = partial(
delete_responses,
response_id=response_id,
custom_llm_provider=custom_llm_provider,
extra_headers=extra_headers,
extra_query=extra_query,
extra_body=extra_body,
timeout=timeout,
**kwargs,
)
ctx = contextvars.copy_context()
func_with_context = partial(ctx.run, func)
init_response = await loop.run_in_executor(None, func_with_context)
if asyncio.iscoroutine(init_response):
response = await init_response
else:
response = init_response
return response
except Exception as e:
raise litellm.exception_type(
model=None,
custom_llm_provider=custom_llm_provider,
original_exception=e,
completion_kwargs=local_vars,
extra_kwargs=kwargs,
)
@client
def delete_responses(
response_id: str,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Optional[Dict[str, Any]] = None,
extra_query: Optional[Dict[str, Any]] = None,
extra_body: Optional[Dict[str, Any]] = None,
timeout: Optional[Union[float, httpx.Timeout]] = None,
# LiteLLM specific params,
custom_llm_provider: Optional[str] = None,
**kwargs,
) -> Union[DeleteResponseResult, Coroutine[Any, Any, DeleteResponseResult]]:
"""
Synchronous version of the DELETE Responses API
DELETE /v1/responses/{response_id} endpoint in the responses API
"""
local_vars = locals()
try:
litellm_logging_obj: LiteLLMLoggingObj = kwargs.get("litellm_logging_obj") # type: ignore
litellm_call_id: Optional[str] = kwargs.get("litellm_call_id", None)
_is_async = kwargs.pop("adelete_responses", False) is True
# get llm provider logic
litellm_params = GenericLiteLLMParams(**kwargs)
# get custom llm provider from response_id
decoded_response_id: DecodedResponseId = (
ResponsesAPIRequestUtils._decode_responses_api_response_id(
response_id=response_id,
)
)
response_id = decoded_response_id.get("response_id") or response_id
custom_llm_provider = (
decoded_response_id.get("custom_llm_provider") or custom_llm_provider
)
if custom_llm_provider is None:
raise ValueError("custom_llm_provider is required but passed as None")
# get provider config
responses_api_provider_config: Optional[BaseResponsesAPIConfig] = (
ProviderConfigManager.get_provider_responses_api_config(
model=None,
provider=litellm.LlmProviders(custom_llm_provider),
)
)
if responses_api_provider_config is None:
raise ValueError(
f"DELETE responses is not supported for {custom_llm_provider}"
)
local_vars.update(kwargs)
# Pre Call logging
litellm_logging_obj.update_environment_variables(
model=None,
optional_params={
"response_id": response_id,
},
litellm_params={
"litellm_call_id": litellm_call_id,
},
custom_llm_provider=custom_llm_provider,
)
# Call the handler with _is_async flag instead of directly calling the async handler
response = base_llm_http_handler.delete_response_api_handler(
response_id=response_id,
custom_llm_provider=custom_llm_provider,
responses_api_provider_config=responses_api_provider_config,
litellm_params=litellm_params,
logging_obj=litellm_logging_obj,
extra_headers=extra_headers,
extra_body=extra_body,
timeout=timeout or request_timeout,
_is_async=_is_async,
client=kwargs.get("client"),
)
return response
except Exception as e:
raise litellm.exception_type(
model=None,
custom_llm_provider=custom_llm_provider,
original_exception=e,
completion_kwargs=local_vars,
extra_kwargs=kwargs,
)
@client
async def aget_responses(
response_id: str,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Optional[Dict[str, Any]] = None,
extra_query: Optional[Dict[str, Any]] = None,
extra_body: Optional[Dict[str, Any]] = None,
timeout: Optional[Union[float, httpx.Timeout]] = None,
# LiteLLM specific params,
custom_llm_provider: Optional[str] = None,
**kwargs,
) -> ResponsesAPIResponse:
"""
Async: Fetch a response by its ID.
GET /v1/responses/{response_id} endpoint in the responses API
Args:
response_id: The ID of the response to fetch.
custom_llm_provider: Optional provider name. If not specified, will be decoded from response_id.
Returns:
The response object with complete information about the stored response.
"""
local_vars = locals()
try:
loop = asyncio.get_event_loop()
kwargs["aget_responses"] = True
# get custom llm provider from response_id
decoded_response_id: DecodedResponseId = (
ResponsesAPIRequestUtils._decode_responses_api_response_id(
response_id=response_id,
)
)
response_id = decoded_response_id.get("response_id") or response_id
custom_llm_provider = (
decoded_response_id.get("custom_llm_provider") or custom_llm_provider
)
func = partial(
get_responses,
response_id=response_id,
custom_llm_provider=custom_llm_provider,
extra_headers=extra_headers,
extra_query=extra_query,
extra_body=extra_body,
timeout=timeout,
**kwargs,
)
ctx = contextvars.copy_context()
func_with_context = partial(ctx.run, func)
init_response = await loop.run_in_executor(None, func_with_context)
if asyncio.iscoroutine(init_response):
response = await init_response
else:
response = init_response
# Update the responses_api_response_id with the model_id
if isinstance(response, ResponsesAPIResponse):
response = ResponsesAPIRequestUtils._update_responses_api_response_id_with_model_id(
responses_api_response=response,
litellm_metadata=kwargs.get("litellm_metadata", {}),
custom_llm_provider=custom_llm_provider,
)
return response
except Exception as e:
raise litellm.exception_type(
model=None,
custom_llm_provider=custom_llm_provider,
original_exception=e,
completion_kwargs=local_vars,
extra_kwargs=kwargs,
)
@client
def get_responses(
response_id: str,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Optional[Dict[str, Any]] = None,
extra_query: Optional[Dict[str, Any]] = None,
extra_body: Optional[Dict[str, Any]] = None,
timeout: Optional[Union[float, httpx.Timeout]] = None,
# LiteLLM specific params,
custom_llm_provider: Optional[str] = None,
**kwargs,
) -> Union[ResponsesAPIResponse, Coroutine[Any, Any, ResponsesAPIResponse]]:
"""
Fetch a response by its ID.
GET /v1/responses/{response_id} endpoint in the responses API
Args:
response_id: The ID of the response to fetch.
custom_llm_provider: Optional provider name. If not specified, will be decoded from response_id.
Returns:
The response object with complete information about the stored response.
"""
local_vars = locals()
try:
litellm_logging_obj: LiteLLMLoggingObj = kwargs.get("litellm_logging_obj") # type: ignore
litellm_call_id: Optional[str] = kwargs.get("litellm_call_id", None)
_is_async = kwargs.pop("aget_responses", False) is True
# get llm provider logic
litellm_params = GenericLiteLLMParams(**kwargs)
# get custom llm provider from response_id
decoded_response_id: DecodedResponseId = (
ResponsesAPIRequestUtils._decode_responses_api_response_id(
response_id=response_id,
)
)
response_id = decoded_response_id.get("response_id") or response_id
custom_llm_provider = (
decoded_response_id.get("custom_llm_provider") or custom_llm_provider
)
if custom_llm_provider is None:
raise ValueError("custom_llm_provider is required but passed as None")
# get provider config
responses_api_provider_config: Optional[BaseResponsesAPIConfig] = (
ProviderConfigManager.get_provider_responses_api_config(
model=None,
provider=litellm.LlmProviders(custom_llm_provider),
)
)
if responses_api_provider_config is None:
raise ValueError(
f"GET responses is not supported for {custom_llm_provider}"
)
local_vars.update(kwargs)
# Pre Call logging
litellm_logging_obj.update_environment_variables(
model=None,
optional_params={
"response_id": response_id,
},
litellm_params={
"litellm_call_id": litellm_call_id,
},
custom_llm_provider=custom_llm_provider,
)
# Call the handler with _is_async flag instead of directly calling the async handler
response = base_llm_http_handler.get_responses(
response_id=response_id,
custom_llm_provider=custom_llm_provider,
responses_api_provider_config=responses_api_provider_config,
litellm_params=litellm_params,
logging_obj=litellm_logging_obj,
extra_headers=extra_headers,
extra_body=extra_body,
timeout=timeout or request_timeout,
_is_async=_is_async,
client=kwargs.get("client"),
)
# Update the responses_api_response_id with the model_id
if isinstance(response, ResponsesAPIResponse):
response = ResponsesAPIRequestUtils._update_responses_api_response_id_with_model_id(
responses_api_response=response,
litellm_metadata=kwargs.get("litellm_metadata", {}),
custom_llm_provider=custom_llm_provider,
)
return response
except Exception as e:
raise litellm.exception_type(
model=None,
custom_llm_provider=custom_llm_provider,
original_exception=e,
completion_kwargs=local_vars,
extra_kwargs=kwargs,
)
@client
async def alist_input_items(
response_id: str,
after: Optional[str] = None,
before: Optional[str] = None,
include: Optional[List[str]] = None,
limit: int = 20,
order: Literal["asc", "desc"] = "desc",
extra_headers: Optional[Dict[str, Any]] = None,
timeout: Optional[Union[float, httpx.Timeout]] = None,
custom_llm_provider: Optional[str] = None,
**kwargs,
) -> Dict:
"""Async: List input items for a response"""
local_vars = locals()
try:
loop = asyncio.get_event_loop()
kwargs["alist_input_items"] = True
decoded_response_id = (
ResponsesAPIRequestUtils._decode_responses_api_response_id(
response_id=response_id
)
)
response_id = decoded_response_id.get("response_id") or response_id
custom_llm_provider = (
decoded_response_id.get("custom_llm_provider") or custom_llm_provider
)
func = partial(
list_input_items,
response_id=response_id,
after=after,
before=before,
include=include,
limit=limit,
order=order,
extra_headers=extra_headers,
timeout=timeout,
custom_llm_provider=custom_llm_provider,
**kwargs,
)
ctx = contextvars.copy_context()
func_with_context = partial(ctx.run, func)
init_response = await loop.run_in_executor(None, func_with_context)
if asyncio.iscoroutine(init_response):
response = await init_response
else:
response = init_response
return response
except Exception as e:
raise litellm.exception_type(
model=None,
custom_llm_provider=custom_llm_provider,
original_exception=e,
completion_kwargs=local_vars,
extra_kwargs=kwargs,
)
@client
def list_input_items(
response_id: str,
after: Optional[str] = None,
before: Optional[str] = None,
include: Optional[List[str]] = None,
limit: int = 20,
order: Literal["asc", "desc"] = "desc",
extra_headers: Optional[Dict[str, Any]] = None,
timeout: Optional[Union[float, httpx.Timeout]] = None,
custom_llm_provider: Optional[str] = None,
**kwargs,
) -> Union[Dict, Coroutine[Any, Any, Dict]]:
"""List input items for a response"""
local_vars = locals()
try:
litellm_logging_obj: LiteLLMLoggingObj = kwargs.get("litellm_logging_obj") # type: ignore
litellm_call_id: Optional[str] = kwargs.get("litellm_call_id", None)
_is_async = kwargs.pop("alist_input_items", False) is True
litellm_params = GenericLiteLLMParams(**kwargs)
decoded_response_id = (
ResponsesAPIRequestUtils._decode_responses_api_response_id(
response_id=response_id
)
)
response_id = decoded_response_id.get("response_id") or response_id
custom_llm_provider = (
decoded_response_id.get("custom_llm_provider") or custom_llm_provider
)
if custom_llm_provider is None:
raise ValueError("custom_llm_provider is required but passed as None")
responses_api_provider_config: Optional[BaseResponsesAPIConfig] = (
ProviderConfigManager.get_provider_responses_api_config(
model=None,
provider=litellm.LlmProviders(custom_llm_provider),
)
)
if responses_api_provider_config is None:
raise ValueError(
f"list_input_items is not supported for {custom_llm_provider}"
)
local_vars.update(kwargs)
litellm_logging_obj.update_environment_variables(
model=None,
optional_params={"response_id": response_id},
litellm_params={"litellm_call_id": litellm_call_id},
custom_llm_provider=custom_llm_provider,
)
response = base_llm_http_handler.list_responses_input_items(
response_id=response_id,
custom_llm_provider=custom_llm_provider,
responses_api_provider_config=responses_api_provider_config,
litellm_params=litellm_params,
logging_obj=litellm_logging_obj,
after=after,
before=before,
include=include,
limit=limit,
order=order,
extra_headers=extra_headers,
timeout=timeout or request_timeout,
_is_async=_is_async,
client=kwargs.get("client"),
)
return response
except Exception as e:
raise litellm.exception_type(
model=None,
custom_llm_provider=custom_llm_provider,
original_exception=e,
completion_kwargs=local_vars,
extra_kwargs=kwargs,
)