140 lines
5.1 KiB
Python
140 lines
5.1 KiB
Python
|
|
import base64
|
||
|
|
import datetime
|
||
|
|
from typing import Dict, List, Optional, Union
|
||
|
|
|
||
|
|
import httpx
|
||
|
|
|
||
|
|
import litellm
|
||
|
|
from litellm.constants import DEFAULT_MAX_RECURSE_DEPTH
|
||
|
|
from litellm.llms.base_llm.base_utils import BaseLLMModelInfo
|
||
|
|
from litellm.llms.base_llm.chat.transformation import BaseLLMException
|
||
|
|
from litellm.secret_managers.main import get_secret_str
|
||
|
|
from litellm.types.llms.openai import AllMessageValues
|
||
|
|
|
||
|
|
|
||
|
|
class GeminiError(BaseLLMException):
|
||
|
|
pass
|
||
|
|
|
||
|
|
|
||
|
|
class GeminiModelInfo(BaseLLMModelInfo):
|
||
|
|
def validate_environment(
|
||
|
|
self,
|
||
|
|
headers: dict,
|
||
|
|
model: str,
|
||
|
|
messages: List[AllMessageValues],
|
||
|
|
optional_params: dict,
|
||
|
|
litellm_params: dict,
|
||
|
|
api_key: Optional[str] = None,
|
||
|
|
api_base: Optional[str] = None,
|
||
|
|
) -> dict:
|
||
|
|
"""Google AI Studio sends api key in query params"""
|
||
|
|
return headers
|
||
|
|
|
||
|
|
@property
|
||
|
|
def api_version(self) -> str:
|
||
|
|
return "v1beta"
|
||
|
|
|
||
|
|
@staticmethod
|
||
|
|
def get_api_base(api_base: Optional[str] = None) -> Optional[str]:
|
||
|
|
return (
|
||
|
|
api_base
|
||
|
|
or get_secret_str("GEMINI_API_BASE")
|
||
|
|
or "https://generativelanguage.googleapis.com"
|
||
|
|
)
|
||
|
|
|
||
|
|
@staticmethod
|
||
|
|
def get_api_key(api_key: Optional[str] = None) -> Optional[str]:
|
||
|
|
return api_key or (get_secret_str("GOOGLE_API_KEY")) or (get_secret_str("GEMINI_API_KEY"))
|
||
|
|
|
||
|
|
@staticmethod
|
||
|
|
def get_base_model(model: str) -> Optional[str]:
|
||
|
|
return model.replace("gemini/", "")
|
||
|
|
|
||
|
|
def process_model_name(self, models: List[Dict[str, str]]) -> List[str]:
|
||
|
|
litellm_model_names = []
|
||
|
|
for model in models:
|
||
|
|
stripped_model_name = model["name"].replace("models/", "")
|
||
|
|
litellm_model_name = "gemini/" + stripped_model_name
|
||
|
|
litellm_model_names.append(litellm_model_name)
|
||
|
|
return litellm_model_names
|
||
|
|
|
||
|
|
def get_models(
|
||
|
|
self, api_key: Optional[str] = None, api_base: Optional[str] = None
|
||
|
|
) -> List[str]:
|
||
|
|
api_base = GeminiModelInfo.get_api_base(api_base)
|
||
|
|
api_key = GeminiModelInfo.get_api_key(api_key)
|
||
|
|
endpoint = f"/{self.api_version}/models"
|
||
|
|
if api_base is None or api_key is None:
|
||
|
|
raise ValueError(
|
||
|
|
"GEMINI_API_BASE or GEMINI_API_KEY/GOOGLE_API_KEY is not set. Please set the environment variable, to query Gemini's `/models` endpoint."
|
||
|
|
)
|
||
|
|
|
||
|
|
response = litellm.module_level_client.get(
|
||
|
|
url=f"{api_base}{endpoint}?key={api_key}",
|
||
|
|
)
|
||
|
|
|
||
|
|
if response.status_code != 200:
|
||
|
|
raise ValueError(
|
||
|
|
f"Failed to fetch models from Gemini. Status code: {response.status_code}, Response: {response.json()}"
|
||
|
|
)
|
||
|
|
|
||
|
|
models = response.json()["models"]
|
||
|
|
|
||
|
|
litellm_model_names = self.process_model_name(models)
|
||
|
|
return litellm_model_names
|
||
|
|
|
||
|
|
def get_error_class(
|
||
|
|
self, error_message: str, status_code: int, headers: Union[dict, httpx.Headers]
|
||
|
|
) -> BaseLLMException:
|
||
|
|
return GeminiError(
|
||
|
|
status_code=status_code, message=error_message, headers=headers
|
||
|
|
)
|
||
|
|
|
||
|
|
|
||
|
|
def encode_unserializable_types(
|
||
|
|
data: Dict[str, object], depth: int = 0
|
||
|
|
) -> Dict[str, object]:
|
||
|
|
"""Converts unserializable types in dict to json.dumps() compatible types.
|
||
|
|
|
||
|
|
This function is called in models.py after calling convert_to_dict(). The
|
||
|
|
convert_to_dict() can convert pydantic object to dict. However, the input to
|
||
|
|
convert_to_dict() is dict mixed of pydantic object and nested dict(the output
|
||
|
|
of converters). So they may be bytes in the dict and they are out of
|
||
|
|
`ser_json_bytes` control in model_dump(mode='json') called in
|
||
|
|
`convert_to_dict`, as well as datetime deserialization in Pydantic json mode.
|
||
|
|
|
||
|
|
Returns:
|
||
|
|
A dictionary with json.dumps() incompatible type (e.g. bytes datetime)
|
||
|
|
to compatible type (e.g. base64 encoded string, isoformat date string).
|
||
|
|
"""
|
||
|
|
if depth > DEFAULT_MAX_RECURSE_DEPTH:
|
||
|
|
return data
|
||
|
|
processed_data: dict[str, object] = {}
|
||
|
|
if not isinstance(data, dict):
|
||
|
|
return data
|
||
|
|
for key, value in data.items():
|
||
|
|
if isinstance(value, bytes):
|
||
|
|
processed_data[key] = base64.urlsafe_b64encode(value).decode("ascii")
|
||
|
|
elif isinstance(value, datetime.datetime):
|
||
|
|
processed_data[key] = value.isoformat()
|
||
|
|
elif isinstance(value, dict):
|
||
|
|
processed_data[key] = encode_unserializable_types(value, depth + 1)
|
||
|
|
elif isinstance(value, list):
|
||
|
|
if all(isinstance(v, bytes) for v in value):
|
||
|
|
processed_data[key] = [
|
||
|
|
base64.urlsafe_b64encode(v).decode("ascii") for v in value
|
||
|
|
]
|
||
|
|
if all(isinstance(v, datetime.datetime) for v in value):
|
||
|
|
processed_data[key] = [v.isoformat() for v in value]
|
||
|
|
else:
|
||
|
|
processed_data[key] = [
|
||
|
|
encode_unserializable_types(v, depth + 1) for v in value
|
||
|
|
]
|
||
|
|
else:
|
||
|
|
processed_data[key] = value
|
||
|
|
return processed_data
|
||
|
|
|
||
|
|
|
||
|
|
def get_api_key_from_env() -> Optional[str]:
|
||
|
|
return get_secret_str("GOOGLE_API_KEY") or get_secret_str("GEMINI_API_KEY")
|