ai-station/.venv/lib/python3.12/site-packages/litellm/proxy/google_endpoints/endpoints.py

155 lines
5.2 KiB
Python
Raw Normal View History

2025-12-25 14:54:33 +00:00
from fastapi import APIRouter, Depends, Request, Response
from litellm.proxy._types import *
from litellm.proxy.auth.user_api_key_auth import UserAPIKeyAuth, user_api_key_auth
from litellm.proxy.common_request_processing import ProxyBaseLLMRequestProcessing
router = APIRouter(
tags=["google genai endpoints"],
)
@router.post("/v1beta/models/{model_name}:generateContent", dependencies=[Depends(user_api_key_auth)])
@router.post("/models/{model_name}:generateContent", dependencies=[Depends(user_api_key_auth)])
async def google_generate_content(
request: Request,
model_name: str,
fastapi_response: Response,
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
):
"""
Not Implemented, this is a placeholder for the google genai generateContent endpoint.
"""
from litellm.proxy.proxy_server import (
_read_request_body,
general_settings,
llm_router,
proxy_config,
proxy_logging_obj,
select_data_generator,
user_api_base,
user_max_tokens,
user_model,
user_request_timeout,
user_temperature,
version,
)
data = await _read_request_body(request=request)
if "model" not in data:
data["model"] = model_name
processor = ProxyBaseLLMRequestProcessing(data=data)
try:
return await processor.base_process_llm_request(
request=request,
fastapi_response=fastapi_response,
user_api_key_dict=user_api_key_dict,
route_type="agenerate_content",
proxy_logging_obj=proxy_logging_obj,
llm_router=llm_router,
general_settings=general_settings,
proxy_config=proxy_config,
select_data_generator=select_data_generator,
model=None,
user_model=user_model,
user_temperature=user_temperature,
user_request_timeout=user_request_timeout,
user_max_tokens=user_max_tokens,
user_api_base=user_api_base,
version=version,
)
except Exception as e:
raise await processor._handle_llm_api_exception(
e=e,
user_api_key_dict=user_api_key_dict,
proxy_logging_obj=proxy_logging_obj,
version=version,
)
class GoogleAIStudioDataGenerator:
"""
Ensures SSE data generator is used for Google AI Studio streaming responses
Thin wrapper around ProxyBaseLLMRequestProcessing.async_sse_data_generator
"""
@staticmethod
def _select_data_generator(response, user_api_key_dict, request_data):
from litellm.proxy.proxy_server import proxy_logging_obj
return ProxyBaseLLMRequestProcessing.async_sse_data_generator(
response=response,
user_api_key_dict=user_api_key_dict,
request_data=request_data,
proxy_logging_obj=proxy_logging_obj,
)
@router.post("/v1beta/models/{model_name}:streamGenerateContent", dependencies=[Depends(user_api_key_auth)])
@router.post("/models/{model_name}:streamGenerateContent", dependencies=[Depends(user_api_key_auth)])
async def google_stream_generate_content(
request: Request,
model_name: str,
fastapi_response: Response,
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
):
"""
Not Implemented, this is a placeholder for the google genai streamGenerateContent endpoint.
"""
from litellm.proxy.proxy_server import (
_read_request_body,
general_settings,
llm_router,
proxy_config,
proxy_logging_obj,
user_api_base,
user_max_tokens,
user_model,
user_request_timeout,
user_temperature,
version,
)
data = await _read_request_body(request=request)
if "model" not in data:
data["model"] = model_name
processor = ProxyBaseLLMRequestProcessing(data=data)
try:
return await processor.base_process_llm_request(
request=request,
fastapi_response=fastapi_response,
user_api_key_dict=user_api_key_dict,
route_type="agenerate_content_stream",
proxy_logging_obj=proxy_logging_obj,
llm_router=llm_router,
general_settings=general_settings,
proxy_config=proxy_config,
select_data_generator=GoogleAIStudioDataGenerator._select_data_generator,
model=None,
user_model=user_model,
user_temperature=user_temperature,
user_request_timeout=user_request_timeout,
user_max_tokens=user_max_tokens,
user_api_base=user_api_base,
version=version,
is_streaming_request=True,
)
except Exception as e:
raise await processor._handle_llm_api_exception(
e=e,
user_api_key_dict=user_api_key_dict,
proxy_logging_obj=proxy_logging_obj,
version=version,
)
@router.post("/v1beta/models/{model_name}:countTokens", dependencies=[Depends(user_api_key_auth)])
@router.post("/models/{model_name}:countTokens", dependencies=[Depends(user_api_key_auth)])
async def google_count_tokens(request: Request, model_name: str):
"""
Not Implemented, this is a placeholder for the google genai countTokens endpoint.
"""
return {}