224 lines
8.0 KiB
Python
224 lines
8.0 KiB
Python
|
|
"""This is an educational implementation of the byte pair encoding algorithm."""
|
|||
|
|
|
|||
|
|
from __future__ import annotations
|
|||
|
|
|
|||
|
|
import collections
|
|||
|
|
|
|||
|
|
import regex
|
|||
|
|
|
|||
|
|
import tiktoken
|
|||
|
|
|
|||
|
|
|
|||
|
|
class SimpleBytePairEncoding:
|
|||
|
|
def __init__(self, *, pat_str: str, mergeable_ranks: dict[bytes, int]) -> None:
|
|||
|
|
"""Creates an Encoding object."""
|
|||
|
|
# A regex pattern string that is used to split the input text
|
|||
|
|
self.pat_str = pat_str
|
|||
|
|
# A dictionary mapping token bytes to their ranks. The ranks correspond to merge priority
|
|||
|
|
self.mergeable_ranks = mergeable_ranks
|
|||
|
|
|
|||
|
|
self._decoder = {token: token_bytes for token_bytes, token in mergeable_ranks.items()}
|
|||
|
|
self._pat = regex.compile(pat_str)
|
|||
|
|
|
|||
|
|
def encode(self, text: str, visualise: str | None = "colour") -> list[int]:
|
|||
|
|
"""Encodes a string into tokens.
|
|||
|
|
|
|||
|
|
>>> enc.encode("hello world")
|
|||
|
|
[388, 372]
|
|||
|
|
"""
|
|||
|
|
# Use the regex to split the text into (approximately) words
|
|||
|
|
words = self._pat.findall(text)
|
|||
|
|
tokens = []
|
|||
|
|
for word in words:
|
|||
|
|
# Turn each word into tokens, using the byte pair encoding algorithm
|
|||
|
|
word_bytes = word.encode("utf-8")
|
|||
|
|
word_tokens = bpe_encode(self.mergeable_ranks, word_bytes, visualise=visualise)
|
|||
|
|
tokens.extend(word_tokens)
|
|||
|
|
return tokens
|
|||
|
|
|
|||
|
|
def decode_bytes(self, tokens: list[int]) -> bytes:
|
|||
|
|
"""Decodes a list of tokens into bytes.
|
|||
|
|
|
|||
|
|
>>> enc.decode_bytes([388, 372])
|
|||
|
|
b'hello world'
|
|||
|
|
"""
|
|||
|
|
return b"".join(self._decoder[token] for token in tokens)
|
|||
|
|
|
|||
|
|
def decode(self, tokens: list[int]) -> str:
|
|||
|
|
"""Decodes a list of tokens into a string.
|
|||
|
|
|
|||
|
|
Decoded bytes are not guaranteed to be valid UTF-8. In that case, we replace
|
|||
|
|
the invalid bytes with the replacement character "<EFBFBD>".
|
|||
|
|
|
|||
|
|
>>> enc.decode([388, 372])
|
|||
|
|
'hello world'
|
|||
|
|
"""
|
|||
|
|
return self.decode_bytes(tokens).decode("utf-8", errors="replace")
|
|||
|
|
|
|||
|
|
def decode_tokens_bytes(self, tokens: list[int]) -> list[bytes]:
|
|||
|
|
"""Decodes a list of tokens into a list of bytes.
|
|||
|
|
|
|||
|
|
Useful for visualising how a string is tokenised.
|
|||
|
|
|
|||
|
|
>>> enc.decode_tokens_bytes([388, 372])
|
|||
|
|
[b'hello', b' world']
|
|||
|
|
"""
|
|||
|
|
return [self._decoder[token] for token in tokens]
|
|||
|
|
|
|||
|
|
@staticmethod
|
|||
|
|
def train(training_data: str, vocab_size: int, pat_str: str):
|
|||
|
|
"""Train a BPE tokeniser on some data!"""
|
|||
|
|
mergeable_ranks = bpe_train(data=training_data, vocab_size=vocab_size, pat_str=pat_str)
|
|||
|
|
return SimpleBytePairEncoding(pat_str=pat_str, mergeable_ranks=mergeable_ranks)
|
|||
|
|
|
|||
|
|
@staticmethod
|
|||
|
|
def from_tiktoken(encoding):
|
|||
|
|
if isinstance(encoding, str):
|
|||
|
|
encoding = tiktoken.get_encoding(encoding)
|
|||
|
|
return SimpleBytePairEncoding(
|
|||
|
|
pat_str=encoding._pat_str, mergeable_ranks=encoding._mergeable_ranks
|
|||
|
|
)
|
|||
|
|
|
|||
|
|
|
|||
|
|
def bpe_encode(
|
|||
|
|
mergeable_ranks: dict[bytes, int], input: bytes, visualise: str | None = "colour"
|
|||
|
|
) -> list[int]:
|
|||
|
|
parts = [bytes([b]) for b in input]
|
|||
|
|
while True:
|
|||
|
|
# See the intermediate merges play out!
|
|||
|
|
if visualise:
|
|||
|
|
if visualise in ["colour", "color"]:
|
|||
|
|
visualise_tokens(parts)
|
|||
|
|
elif visualise == "simple":
|
|||
|
|
print(parts)
|
|||
|
|
|
|||
|
|
# Iterate over all pairs and find the pair we want to merge the most
|
|||
|
|
min_idx = None
|
|||
|
|
min_rank = None
|
|||
|
|
for i, pair in enumerate(zip(parts[:-1], parts[1:])):
|
|||
|
|
rank = mergeable_ranks.get(pair[0] + pair[1])
|
|||
|
|
if rank is not None and (min_rank is None or rank < min_rank):
|
|||
|
|
min_idx = i
|
|||
|
|
min_rank = rank
|
|||
|
|
|
|||
|
|
# If there were no pairs we could merge, we're done!
|
|||
|
|
if min_rank is None:
|
|||
|
|
break
|
|||
|
|
assert min_idx is not None
|
|||
|
|
|
|||
|
|
# Otherwise, merge that pair and leave the rest unchanged. Then repeat.
|
|||
|
|
parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2 :]
|
|||
|
|
|
|||
|
|
if visualise:
|
|||
|
|
print()
|
|||
|
|
|
|||
|
|
tokens = [mergeable_ranks[part] for part in parts]
|
|||
|
|
return tokens
|
|||
|
|
|
|||
|
|
|
|||
|
|
def bpe_train(
|
|||
|
|
data: str, vocab_size: int, pat_str: str, visualise: str | None = "colour"
|
|||
|
|
) -> dict[bytes, int]:
|
|||
|
|
# First, add tokens for each individual byte value
|
|||
|
|
if vocab_size < 2**8:
|
|||
|
|
raise ValueError("vocab_size must be at least 256, so we can encode all bytes")
|
|||
|
|
ranks = {}
|
|||
|
|
for i in range(2**8):
|
|||
|
|
ranks[bytes([i])] = i
|
|||
|
|
|
|||
|
|
# Splinter up our data into lists of bytes
|
|||
|
|
# data = "Hello world"
|
|||
|
|
# words = [
|
|||
|
|
# [b'H', b'e', b'l', b'l', b'o'],
|
|||
|
|
# [b' ', b'w', b'o', b'r', b'l', b'd']
|
|||
|
|
# ]
|
|||
|
|
words: list[list[bytes]] = [
|
|||
|
|
[bytes([b]) for b in word.encode("utf-8")] for word in regex.findall(pat_str, data)
|
|||
|
|
]
|
|||
|
|
|
|||
|
|
# Now, use our data to figure out which merges we should make
|
|||
|
|
while len(ranks) < vocab_size:
|
|||
|
|
# Find the most common pair. This will become our next token
|
|||
|
|
stats = collections.Counter()
|
|||
|
|
for piece in words:
|
|||
|
|
for pair in zip(piece[:-1], piece[1:]):
|
|||
|
|
stats[pair] += 1
|
|||
|
|
|
|||
|
|
most_common_pair = max(stats, key=lambda x: stats[x])
|
|||
|
|
token_bytes = most_common_pair[0] + most_common_pair[1]
|
|||
|
|
token = len(ranks)
|
|||
|
|
# Add the new token!
|
|||
|
|
ranks[token_bytes] = token
|
|||
|
|
|
|||
|
|
# Now merge that most common pair in all the words. That is, update our training data
|
|||
|
|
# to reflect our decision to make that pair into a new token.
|
|||
|
|
new_words = []
|
|||
|
|
for word in words:
|
|||
|
|
new_word = []
|
|||
|
|
i = 0
|
|||
|
|
while i < len(word) - 1:
|
|||
|
|
if (word[i], word[i + 1]) == most_common_pair:
|
|||
|
|
# We found our pair! Merge it
|
|||
|
|
new_word.append(token_bytes)
|
|||
|
|
i += 2
|
|||
|
|
else:
|
|||
|
|
new_word.append(word[i])
|
|||
|
|
i += 1
|
|||
|
|
if i == len(word) - 1:
|
|||
|
|
new_word.append(word[i])
|
|||
|
|
new_words.append(new_word)
|
|||
|
|
words = new_words
|
|||
|
|
|
|||
|
|
# See the intermediate merges play out!
|
|||
|
|
if visualise:
|
|||
|
|
print(f"The current most common pair is {most_common_pair[0]} + {most_common_pair[1]}")
|
|||
|
|
print(f"So we made {token_bytes} our {len(ranks)}th token")
|
|||
|
|
if visualise in ["colour", "color"]:
|
|||
|
|
print("Now the first fifty words in our training data look like:")
|
|||
|
|
visualise_tokens([token for word in words[:50] for token in word])
|
|||
|
|
elif visualise == "simple":
|
|||
|
|
print("Now the first twenty words in our training data look like:")
|
|||
|
|
for word in words[:20]:
|
|||
|
|
print(word)
|
|||
|
|
print("\n")
|
|||
|
|
|
|||
|
|
return ranks
|
|||
|
|
|
|||
|
|
|
|||
|
|
def visualise_tokens(token_values: list[bytes]) -> None:
|
|||
|
|
background = [f"\u001b[48;5;{i}m" for i in [167, 179, 185, 77, 80, 68, 134]]
|
|||
|
|
# If token boundaries do not occur at unicode character boundaries, it's unclear how best to
|
|||
|
|
# visualise the token. Here, we'll just use the unicode replacement character to represent some
|
|||
|
|
# fraction of a character.
|
|||
|
|
unicode_token_values = [x.decode("utf-8", errors="replace") for x in token_values]
|
|||
|
|
|
|||
|
|
running_length = 0
|
|||
|
|
last_color = None
|
|||
|
|
for token in unicode_token_values:
|
|||
|
|
color = background[running_length % len(background)]
|
|||
|
|
if color == last_color:
|
|||
|
|
color = background[(running_length + 1) % len(background)]
|
|||
|
|
assert color != last_color
|
|||
|
|
last_color = color
|
|||
|
|
running_length += len(token)
|
|||
|
|
print(color + token, end="")
|
|||
|
|
print("\u001b[0m")
|
|||
|
|
|
|||
|
|
|
|||
|
|
def train_simple_encoding():
|
|||
|
|
gpt2_pattern = (
|
|||
|
|
r"""'s|'t|'re|'ve|'m|'ll|'d| ?[\p{L}]+| ?[\p{N}]+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+"""
|
|||
|
|
)
|
|||
|
|
with open(__file__) as f:
|
|||
|
|
data = f.read()
|
|||
|
|
|
|||
|
|
enc = SimpleBytePairEncoding.train(data, vocab_size=600, pat_str=gpt2_pattern)
|
|||
|
|
|
|||
|
|
print("This is the sequence of merges performed in order to encode 'hello world':")
|
|||
|
|
tokens = enc.encode("hello world")
|
|||
|
|
assert enc.decode(tokens) == "hello world"
|
|||
|
|
assert enc.decode_bytes(tokens) == b"hello world"
|
|||
|
|
assert enc.decode_tokens_bytes(tokens) == [b"hello", b" world"]
|
|||
|
|
|
|||
|
|
return enc
|