feat: PDF RAG support with glm-4.6:cloud integration
- PyMuPDF PDF text extraction - Qdrant vector store with semantic search - glm-4.6:cloud model for intelligent document analysis - Chainlit UI with streaming responses - PDF chunking system with overlap - Document indexing and retrieval
This commit is contained in:
parent
da13fd4d85
commit
2010c4e84c
|
|
@ -0,0 +1,359 @@
|
|||
import os
|
||||
import re
|
||||
import uuid
|
||||
import shutil
|
||||
from datetime import datetime
|
||||
from typing import Optional
|
||||
|
||||
import chainlit as cl
|
||||
import ollama
|
||||
import fitz # PyMuPDF
|
||||
from qdrant_client import AsyncQdrantClient
|
||||
from qdrant_client.models import PointStruct, Distance, VectorParams
|
||||
from chainlit.data.sql_alchemy import SQLAlchemyDataLayer
|
||||
|
||||
|
||||
# === CONFIGURAZIONE ===
|
||||
DATABASE_URL = os.getenv("DATABASE_URL", "postgresql+asyncpg://ai_user:secure_password_here@postgres:5432/ai_station")
|
||||
OLLAMA_URL = os.getenv("OLLAMA_URL", "http://192.168.1.243:11434")
|
||||
QDRANT_URL = os.getenv("QDRANT_URL", "http://qdrant:6333")
|
||||
|
||||
|
||||
# === INIZIALIZZAZIONE DATA LAYER ===
|
||||
try:
|
||||
data_layer = SQLAlchemyDataLayer(conninfo=DATABASE_URL)
|
||||
cl.data_layer = data_layer
|
||||
print("✅ SQLAlchemyDataLayer initialized successfully")
|
||||
except Exception as e:
|
||||
print(f"❌ Failed to initialize data layer: {e}")
|
||||
cl.data_layer = None
|
||||
|
||||
|
||||
WORKSPACES_DIR = "./workspaces"
|
||||
USER_ROLE = "admin"
|
||||
|
||||
|
||||
# === UTILITY FUNCTIONS ===
|
||||
def create_workspace(user_role: str):
|
||||
"""Crea directory workspace se non esiste"""
|
||||
workspace_path = os.path.join(WORKSPACES_DIR, user_role)
|
||||
os.makedirs(workspace_path, exist_ok=True)
|
||||
return workspace_path
|
||||
|
||||
|
||||
def save_code_to_file(code: str, user_role: str) -> str:
|
||||
"""Salva blocco codice come file .py"""
|
||||
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
||||
file_name = f"code_{timestamp}.py"
|
||||
file_path = os.path.join(WORKSPACES_DIR, user_role, file_name)
|
||||
|
||||
with open(file_path, "w", encoding="utf-8") as f:
|
||||
f.write(code)
|
||||
|
||||
return file_path
|
||||
|
||||
|
||||
def extract_text_from_pdf(pdf_path: str) -> str:
|
||||
"""Estrae testo da PDF usando PyMuPDF"""
|
||||
try:
|
||||
doc = fitz.open(pdf_path)
|
||||
text_parts = []
|
||||
|
||||
for page_num in range(len(doc)):
|
||||
page = doc[page_num]
|
||||
text = page.get_text()
|
||||
text_parts.append(f"--- Pagina {page_num + 1} ---\n{text}\n")
|
||||
|
||||
doc.close()
|
||||
return "\n".join(text_parts)
|
||||
|
||||
except Exception as e:
|
||||
print(f"❌ Errore estrazione PDF: {e}")
|
||||
return ""
|
||||
|
||||
|
||||
# === QDRANT FUNCTIONS ===
|
||||
async def get_qdrant_client() -> AsyncQdrantClient:
|
||||
"""Connessione a Qdrant"""
|
||||
client = AsyncQdrantClient(url=QDRANT_URL)
|
||||
collection_name = "documents"
|
||||
|
||||
# Crea collection se non esiste
|
||||
if not await client.collection_exists(collection_name):
|
||||
await client.create_collection(
|
||||
collection_name=collection_name,
|
||||
vectors_config=VectorParams(size=768, distance=Distance.COSINE)
|
||||
)
|
||||
|
||||
return client
|
||||
|
||||
|
||||
async def get_embeddings(text: str) -> list:
|
||||
"""Genera embeddings con Ollama"""
|
||||
client = ollama.Client(host=OLLAMA_URL)
|
||||
|
||||
# Limita lunghezza per evitare errori
|
||||
max_length = 2000
|
||||
if len(text) > max_length:
|
||||
text = text[:max_length]
|
||||
|
||||
try:
|
||||
response = client.embed(model='nomic-embed-text', input=text)
|
||||
|
||||
if 'embeddings' in response:
|
||||
return response['embeddings'][0]
|
||||
return response.get('embedding', [])
|
||||
|
||||
except Exception as e:
|
||||
print(f"❌ Errore Embedding: {e}")
|
||||
return []
|
||||
|
||||
|
||||
async def index_document(file_name: str, content: str) -> bool:
|
||||
"""Indicizza documento su Qdrant"""
|
||||
try:
|
||||
# Suddividi documento lungo in chunks
|
||||
chunks = chunk_text(content, max_length=1500)
|
||||
|
||||
qdrant_client = await get_qdrant_client()
|
||||
points = []
|
||||
|
||||
for i, chunk in enumerate(chunks):
|
||||
embeddings = await get_embeddings(chunk)
|
||||
if not embeddings:
|
||||
continue
|
||||
|
||||
point_id = str(uuid.uuid4())
|
||||
point = PointStruct(
|
||||
id=point_id,
|
||||
vector=embeddings,
|
||||
payload={
|
||||
"file_name": file_name,
|
||||
"content": chunk,
|
||||
"chunk_index": i,
|
||||
"total_chunks": len(chunks),
|
||||
"indexed_at": datetime.now().isoformat()
|
||||
}
|
||||
)
|
||||
points.append(point)
|
||||
|
||||
if points:
|
||||
await qdrant_client.upsert(collection_name="documents", points=points)
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
except Exception as e:
|
||||
print(f"❌ Errore indicizzazione: {e}")
|
||||
return False
|
||||
|
||||
|
||||
def chunk_text(text: str, max_length: int = 1500, overlap: int = 200) -> list:
|
||||
"""Divide testo in chunks con overlap"""
|
||||
if len(text) <= max_length:
|
||||
return [text]
|
||||
|
||||
chunks = []
|
||||
start = 0
|
||||
|
||||
while start < len(text):
|
||||
end = start + max_length
|
||||
|
||||
# Cerca l'ultimo punto/newline prima del limite
|
||||
if end < len(text):
|
||||
last_period = text.rfind('.', start, end)
|
||||
last_newline = text.rfind('\n', start, end)
|
||||
split_point = max(last_period, last_newline)
|
||||
|
||||
if split_point > start:
|
||||
end = split_point + 1
|
||||
|
||||
chunks.append(text[start:end].strip())
|
||||
start = end - overlap # Overlap per continuità
|
||||
|
||||
return chunks
|
||||
|
||||
|
||||
async def search_qdrant(query_text: str, limit: int = 5) -> str:
|
||||
"""Ricerca documenti rilevanti"""
|
||||
try:
|
||||
qdrant_client = await get_qdrant_client()
|
||||
query_embedding = await get_embeddings(query_text)
|
||||
|
||||
if not query_embedding:
|
||||
return ""
|
||||
|
||||
search_result = await qdrant_client.query_points(
|
||||
collection_name="documents",
|
||||
query=query_embedding,
|
||||
limit=limit
|
||||
)
|
||||
|
||||
contexts = []
|
||||
seen_files = set()
|
||||
|
||||
for hit in search_result.points:
|
||||
if hit.payload:
|
||||
file_name = hit.payload.get('file_name', 'Unknown')
|
||||
content = hit.payload.get('content', '')
|
||||
chunk_idx = hit.payload.get('chunk_index', 0)
|
||||
score = hit.score if hasattr(hit, 'score') else 0
|
||||
|
||||
# Evita duplicati dello stesso file
|
||||
file_key = f"{file_name}_{chunk_idx}"
|
||||
if file_key not in seen_files:
|
||||
seen_files.add(file_key)
|
||||
contexts.append(
|
||||
f"📄 **{file_name}** (chunk {chunk_idx+1}, score: {score:.2f})\n"
|
||||
f"```\n{content[:600]}...\n```"
|
||||
)
|
||||
|
||||
return "\n\n".join(contexts) if contexts else ""
|
||||
|
||||
except Exception as e:
|
||||
print(f"❌ Errore ricerca Qdrant: {e}")
|
||||
return ""
|
||||
|
||||
|
||||
# === CHAINLIT HANDLERS ===
|
||||
@cl.on_chat_start
|
||||
async def on_chat_start():
|
||||
"""Inizializzazione chat"""
|
||||
create_workspace(USER_ROLE)
|
||||
|
||||
# Imposta variabili sessione
|
||||
cl.user_session.set("role", USER_ROLE)
|
||||
|
||||
# Verifica persistenza
|
||||
persistence_status = "✅ Attiva" if cl.data_layer else "⚠️ Disattivata"
|
||||
|
||||
await cl.Message(
|
||||
content=f"🚀 **AI Station Ready** - Workspace: `{USER_ROLE}`\n\n"
|
||||
f"📤 Upload **PDF** o **.txt** per indicizzarli nel RAG\n"
|
||||
f"💾 Persistenza conversazioni: {persistence_status}\n"
|
||||
f"🤖 Modello: `glm-4.6:cloud` @ {OLLAMA_URL}\n\n"
|
||||
f"💡 **Supporto PDF attivo**: Carica fatture, F24, dichiarazioni fiscali!"
|
||||
).send()
|
||||
|
||||
|
||||
@cl.on_message
|
||||
async def on_message(message: cl.Message):
|
||||
"""Gestione messaggi utente"""
|
||||
user_role = cl.user_session.get("role", "guest")
|
||||
|
||||
try:
|
||||
# === STEP 1: Gestione Upload ===
|
||||
if message.elements:
|
||||
await handle_file_uploads(message.elements, user_role)
|
||||
|
||||
# === STEP 2: RAG Search ===
|
||||
context_text = await search_qdrant(message.content, limit=5)
|
||||
|
||||
# === STEP 3: Preparazione Prompt ===
|
||||
system_prompt = (
|
||||
"Sei un assistente AI esperto in analisi documentale e fiscale. "
|
||||
"Usa ESCLUSIVAMENTE il seguente contesto per rispondere. "
|
||||
"Se la risposta non è nel contesto, dillo chiaramente."
|
||||
)
|
||||
|
||||
if context_text:
|
||||
full_prompt = f"{system_prompt}\n\n**CONTESTO DOCUMENTI:**\n{context_text}\n\n**DOMANDA UTENTE:**\n{message.content}"
|
||||
else:
|
||||
full_prompt = f"{system_prompt}\n\n**DOMANDA UTENTE:**\n{message.content}"
|
||||
|
||||
# === STEP 4: Usa glm-4.6:cloud ===
|
||||
client = ollama.Client(host=OLLAMA_URL)
|
||||
|
||||
msg = cl.Message(content="")
|
||||
await msg.send()
|
||||
|
||||
messages = [{"role": "user", "content": full_prompt}]
|
||||
|
||||
stream = client.chat(
|
||||
model='glm-4.6:cloud',
|
||||
messages=messages,
|
||||
stream=True
|
||||
)
|
||||
|
||||
full_response = ""
|
||||
for chunk in stream:
|
||||
content = chunk['message']['content']
|
||||
full_response += content
|
||||
await msg.stream_token(content)
|
||||
|
||||
await msg.update()
|
||||
|
||||
# === STEP 5: Estrai e Salva Codice ===
|
||||
code_blocks = re.findall(r"```python\n(.*?)```", full_response, re.DOTALL)
|
||||
|
||||
if code_blocks:
|
||||
elements = []
|
||||
for code in code_blocks:
|
||||
file_path = save_code_to_file(code.strip(), user_role)
|
||||
elements.append(
|
||||
cl.File(
|
||||
name=os.path.basename(file_path),
|
||||
path=file_path,
|
||||
display="inline"
|
||||
)
|
||||
)
|
||||
|
||||
await cl.Message(
|
||||
content=f"💾 Codice salvato in `{user_role}/`",
|
||||
elements=elements
|
||||
).send()
|
||||
|
||||
except Exception as e:
|
||||
await cl.Message(content=f"❌ **Errore:** {str(e)}").send()
|
||||
|
||||
|
||||
async def handle_file_uploads(elements, user_role: str):
|
||||
"""Gestisce upload e indicizzazione file (TXT e PDF)"""
|
||||
for element in elements:
|
||||
try:
|
||||
# Salva file
|
||||
dest_path = os.path.join(WORKSPACES_DIR, user_role, element.name)
|
||||
shutil.copy(element.path, dest_path)
|
||||
|
||||
content = None
|
||||
|
||||
# Estrai testo in base al tipo di file
|
||||
if element.name.lower().endswith('.pdf'):
|
||||
await cl.Message(content=f"📄 Elaborazione PDF **{element.name}**...").send()
|
||||
content = extract_text_from_pdf(dest_path)
|
||||
|
||||
if not content:
|
||||
await cl.Message(
|
||||
content=f"⚠️ **{element.name}**: PDF vuoto o non leggibile"
|
||||
).send()
|
||||
continue
|
||||
|
||||
elif element.name.lower().endswith('.txt'):
|
||||
with open(dest_path, 'r', encoding='utf-8') as f:
|
||||
content = f.read()
|
||||
|
||||
else:
|
||||
await cl.Message(
|
||||
content=f"📁 **{element.name}** salvato (supportati: .pdf, .txt)"
|
||||
).send()
|
||||
continue
|
||||
|
||||
# Indicizza su Qdrant
|
||||
if content:
|
||||
success = await index_document(element.name, content)
|
||||
|
||||
if success:
|
||||
word_count = len(content.split())
|
||||
await cl.Message(
|
||||
content=f"✅ **{element.name}** indicizzato in Qdrant\n"
|
||||
f"📊 Parole estratte: {word_count:,}"
|
||||
).send()
|
||||
else:
|
||||
await cl.Message(
|
||||
content=f"⚠️ Errore indicizzazione **{element.name}**"
|
||||
).send()
|
||||
|
||||
except Exception as e:
|
||||
await cl.Message(
|
||||
content=f"❌ Errore con **{element.name}**: {str(e)}"
|
||||
).send()
|
||||
26
app.py
26
app.py
|
|
@ -231,7 +231,7 @@ async def on_chat_start():
|
|||
content=f"🚀 **AI Station Ready** - Workspace: `{USER_ROLE}`\n\n"
|
||||
f"📤 Upload **PDF** o **.txt** per indicizzarli nel RAG\n"
|
||||
f"💾 Persistenza conversazioni: {persistence_status}\n"
|
||||
f"🤖 Modello: `qwen2.5-coder:7b` @ {OLLAMA_URL}\n\n"
|
||||
f"🤖 Modello: `glm-4.6:cloud` @ {OLLAMA_URL}\n\n"
|
||||
f"💡 **Supporto PDF attivo**: Carica fatture, F24, dichiarazioni fiscali!"
|
||||
).send()
|
||||
|
||||
|
|
@ -250,27 +250,27 @@ async def on_message(message: cl.Message):
|
|||
context_text = await search_qdrant(message.content, limit=5)
|
||||
|
||||
# === STEP 3: Preparazione Prompt ===
|
||||
messages = []
|
||||
system_prompt = (
|
||||
"Sei un assistente AI esperto in analisi documentale e fiscale. "
|
||||
"Usa ESCLUSIVAMENTE il seguente contesto per rispondere. "
|
||||
"Se la risposta non è nel contesto, dillo chiaramente."
|
||||
)
|
||||
|
||||
if context_text:
|
||||
system_prompt = (
|
||||
"Sei un assistente AI esperto in analisi documentale e fiscale. "
|
||||
"Usa ESCLUSIVAMENTE il seguente contesto per rispondere. "
|
||||
"Se la risposta non è nel contesto, dillo chiaramente.\n\n"
|
||||
f"**CONTESTO:**\n{context_text}"
|
||||
)
|
||||
messages.append({"role": "system", "content": system_prompt})
|
||||
full_prompt = f"{system_prompt}\n\n**CONTESTO DOCUMENTI:**\n{context_text}\n\n**DOMANDA UTENTE:**\n{message.content}"
|
||||
else:
|
||||
full_prompt = f"{system_prompt}\n\n**DOMANDA UTENTE:**\n{message.content}"
|
||||
|
||||
messages.append({"role": "user", "content": message.content})
|
||||
|
||||
# === STEP 4: Chiamata Ollama con Streaming ===
|
||||
# === STEP 4: Usa glm-4.6:cloud ===
|
||||
client = ollama.Client(host=OLLAMA_URL)
|
||||
|
||||
msg = cl.Message(content="")
|
||||
await msg.send()
|
||||
|
||||
messages = [{"role": "user", "content": full_prompt}]
|
||||
|
||||
stream = client.chat(
|
||||
model='qwen2.5-coder:7b',
|
||||
model='glm-4.6:cloud',
|
||||
messages=messages,
|
||||
stream=True
|
||||
)
|
||||
|
|
|
|||
|
|
@ -10,3 +10,5 @@ sniffio
|
|||
aiohttp
|
||||
alembic
|
||||
pymupdf
|
||||
google-generativeai
|
||||
python-dotenv
|
||||
Loading…
Reference in New Issue