implementazione BGE-M3 Dense

This commit is contained in:
AI Station Server 2025-12-30 08:51:10 +01:00
parent 4c4e7b92a7
commit 9cef64f9ea
8 changed files with 170 additions and 193 deletions

353
app.py
View File

@ -2,17 +2,19 @@ import os
import re import re
import uuid import uuid
import shutil import shutil
import pandas as pd # NUOVO: Gestione Excel
import httpx # NUOVO: Chiamate API Remote
from datetime import datetime from datetime import datetime
from typing import Optional, Dict, List from typing import Optional, Dict, List
import chainlit as cl import chainlit as cl
import ollama import ollama
import fitz # PyMuPDF import fitz # PyMuPDF
from qdrant_client import AsyncQdrantClient from qdrant_client import AsyncQdrantClient
from qdrant_client.models import PointStruct, Distance, VectorParams from qdrant_client import models
from qdrant_client.models import PointStruct, Distance, VectorParams, SparseVectorParams, SparseIndexParams
from chainlit.data.sql_alchemy import SQLAlchemyDataLayer from chainlit.data.sql_alchemy import SQLAlchemyDataLayer
# === FIX IMPORT ROBUSTO === # === FIX IMPORT ===
# Gestisce le differenze tra le versioni di Chainlit 2.x
try: try:
from chainlit.data.storage_clients import BaseStorageClient from chainlit.data.storage_clients import BaseStorageClient
except ImportError: except ImportError:
@ -23,8 +25,11 @@ except ImportError:
# === CONFIGURAZIONE === # === CONFIGURAZIONE ===
DATABASE_URL = os.getenv("DATABASE_URL", "postgresql+asyncpg://ai_user:secure_password_here@postgres:5432/ai_station") DATABASE_URL = os.getenv("DATABASE_URL", "postgresql+asyncpg://ai_user:secure_password_here@postgres:5432/ai_station")
# PUNTANO AL SERVER .243 (Il "Cervello")
OLLAMA_URL = os.getenv("OLLAMA_URL", "http://192.168.1.243:11434") OLLAMA_URL = os.getenv("OLLAMA_URL", "http://192.168.1.243:11434")
BGE_API_URL = os.getenv("BGE_API_URL", "http://192.168.1.243:8001")
QDRANT_URL = os.getenv("QDRANT_URL", "http://qdrant:6333") QDRANT_URL = os.getenv("QDRANT_URL", "http://qdrant:6333")
WORKSPACES_DIR = "./workspaces" WORKSPACES_DIR = "./workspaces"
STORAGE_DIR = "./.files" STORAGE_DIR = "./.files"
@ -75,178 +80,172 @@ USER_PROFILES = {
} }
} }
# === CUSTOM LOCAL STORAGE CLIENT (FIXED) ===# Questa classe ora implementa tutti i metodi astratti richiesti da Chainlit 2.8.3 # === STORAGE CLIENT ===
class LocalStorageClient(BaseStorageClient): class LocalStorageClient(BaseStorageClient):
"""Storage locale su filesystem per file/elementi"""
def __init__(self, storage_path: str): def __init__(self, storage_path: str):
self.storage_path = storage_path self.storage_path = storage_path
os.makedirs(storage_path, exist_ok=True) os.makedirs(storage_path, exist_ok=True)
async def upload_file( async def upload_file(self, object_key: str, data: bytes, mime: str = "application/octet-stream", overwrite: bool = True) -> Dict[str, str]:
self,
object_key: str,
data: bytes,
mime: str = "application/octet-stream",
overwrite: bool = True,
) -> Dict[str, str]:
file_path = os.path.join(self.storage_path, object_key) file_path = os.path.join(self.storage_path, object_key)
os.makedirs(os.path.dirname(file_path), exist_ok=True) os.makedirs(os.path.dirname(file_path), exist_ok=True)
with open(file_path, "wb") as f: with open(file_path, "wb") as f: f.write(data)
f.write(data)
return {"object_key": object_key, "url": f"/files/{object_key}"} return {"object_key": object_key, "url": f"/files/{object_key}"}
# Implementazione metodi obbligatori mancanti nella versione precedente async def get_read_url(self, object_key: str) -> str: return f"/files/{object_key}"
async def get_read_url(self, object_key: str) -> str:
return f"/files/{object_key}"
async def delete_file(self, object_key: str) -> bool: async def delete_file(self, object_key: str) -> bool:
file_path = os.path.join(self.storage_path, object_key) path = os.path.join(self.storage_path, object_key)
if os.path.exists(file_path): if os.path.exists(path): os.remove(path); return True
os.remove(file_path)
return True
return False return False
async def close(self): pass
async def close(self):
pass
# === DATA LAYER ===
@cl.data_layer @cl.data_layer
def get_data_layer(): def get_data_layer():
return SQLAlchemyDataLayer( return SQLAlchemyDataLayer(conninfo=DATABASE_URL, user_thread_limit=1000, storage_provider=LocalStorageClient(STORAGE_DIR))
conninfo=DATABASE_URL,
user_thread_limit=1000,
storage_provider=LocalStorageClient(storage_path=STORAGE_DIR)
)
# === OAUTH CALLBACK === # === OAUTH ===
@cl.oauth_callback @cl.oauth_callback
def oauth_callback( def oauth_callback(provider_id: str, token: str, raw_user_data: Dict[str, str], default_user: cl.User) -> Optional[cl.User]:
provider_id: str,
token: str,
raw_user_data: Dict[str, str],
default_user: cl.User,
) -> Optional[cl.User]:
if provider_id == "google": if provider_id == "google":
email = raw_user_data.get("email", "").lower() email = raw_user_data.get("email", "").lower()
# Verifica se utente è autorizzato (opzionale: blocca se non in lista)
# if email not in USER_PROFILES:
# return None
# Recupera profilo o usa default Guest
profile = USER_PROFILES.get(email, get_user_profile("guest")) profile = USER_PROFILES.get(email, get_user_profile("guest"))
default_user.metadata.update({ default_user.metadata.update({
"picture": raw_user_data.get("picture", ""), "picture": raw_user_data.get("picture", ""),
"role": profile["role"], "role": profile["role"], "workspace": profile["workspace"],
"workspace": profile["workspace"], "rag_collection": profile["rag_collection"], "capabilities": profile["capabilities"],
"rag_collection": profile["rag_collection"], "show_code": profile["show_code"], "display_name": profile["name"]
"capabilities": profile["capabilities"],
"show_code": profile["show_code"],
"display_name": profile["name"]
}) })
return default_user return default_user
return default_user return default_user
# === UTILITY FUNCTIONS === def get_user_profile(email: str) -> Dict:
def get_user_profile(user_email: str) -> Dict: return USER_PROFILES.get(email.lower(), {"role": "guest", "name": "Ospite", "workspace": "guest_workspace", "rag_collection": "documents", "show_code": False})
return USER_PROFILES.get(user_email.lower(), {
"role": "guest",
"name": "Ospite",
"workspace": "guest_workspace",
"rag_collection": "documents",
"capabilities": [],
"show_code": False
})
def create_workspace(workspace_name: str) -> str: def create_workspace(name: str) -> str:
path = os.path.join(WORKSPACES_DIR, workspace_name) path = os.path.join(WORKSPACES_DIR, name)
os.makedirs(path, exist_ok=True) os.makedirs(path, exist_ok=True)
return path return path
def save_code_to_file(code: str, workspace: str) -> str: def save_code_to_file(code: str, workspace: str) -> str:
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") ts = datetime.now().strftime("%Y%m%d_%H%M%S")
file_name = f"code_{timestamp}.py" path = os.path.join(WORKSPACES_DIR, workspace, f"code_{ts}.py")
file_path = os.path.join(WORKSPACES_DIR, workspace, file_name) with open(path, "w", encoding="utf-8") as f: f.write(code)
with open(file_path, "w", encoding="utf-8") as f: return path
f.write(code)
return file_path
def extract_text_from_pdf(pdf_path: str) -> str: # === PARSING DOCUMENTI ===
def extract_text_from_pdf(path: str) -> str:
try: try:
doc = fitz.open(pdf_path) doc = fitz.open(path)
text = "\n".join([page.get_text() for page in doc]) return "\n".join([page.get_text() for page in doc])
doc.close() except: return ""
return text
except Exception: def extract_text_from_excel(path: str) -> str:
"""Estrae testo da Excel convertendo i fogli in Markdown"""
try:
xl = pd.read_excel(path, sheet_name=None)
text_content = []
for sheet, df in xl.items():
text_content.append(f"\n--- Foglio Excel: {sheet} ---\n")
# Pulisce NaN e converte in stringa
clean_df = df.fillna("").astype(str)
text_content.append(clean_df.to_markdown(index=False))
return "\n".join(text_content)
except Exception as e:
print(f"❌ Errore Excel: {e}")
return "" return ""
# === QDRANT FUNCTIONS === # === AI & EMBEDDINGS (Remoto) ===
async def get_qdrant_client() -> AsyncQdrantClient:
return AsyncQdrantClient(url=QDRANT_URL)
async def ensure_collection(collection_name: str):
client = await get_qdrant_client()
if not await client.collection_exists(collection_name):
await client.create_collection(
collection_name=collection_name,
vectors_config=VectorParams(size=768, distance=Distance.COSINE)
)
async def get_embeddings(text: str) -> list: async def get_embeddings(text: str) -> list:
client = ollama.Client(host=OLLAMA_URL)
try: try:
response = client.embed(model='nomic-embed-text', input=text[:2000]) async with httpx.AsyncClient(timeout=30.0) as client:
if 'embeddings' in response: return response['embeddings'][0] resp = await client.post(
return response.get('embedding', []) f"{BGE_API_URL}/embed",
except: return [] json={"texts": [text], "normalize": True}
)
if resp.status_code == 200:
data = resp.json()
# Gestisce sia il vecchio formato (lista diretta) che il nuovo (dict)
if isinstance(data, list): return data[0] # Vecchia API
if "dense" in data: return data["dense"][0] # Nuova API Hybrid
if "embeddings" in data: return data["embeddings"][0] # API precedente
except Exception as e:
print(f"⚠️ Errore Embedding: {e}")
return []
async def index_document(file_name: str, content: str, collection_name: str) -> bool: async def ensure_collection(name: str):
try: client = AsyncQdrantClient(url=QDRANT_URL)
await ensure_collection(collection_name) if not await client.collection_exists(name):
embedding = await get_embeddings(content) # Creiamo una collezione ottimizzata
if not embedding: return False await client.create_collection(
collection_name=name,
qdrant = await get_qdrant_client() vectors_config={
await qdrant.upsert( "bge_dense": VectorParams(size=1024, distance=Distance.COSINE)
collection_name=collection_name, }
points=[PointStruct( # Se in futuro abilitiamo lo sparse output dal .243, aggiungeremo:
id=str(uuid.uuid4()), # sparse_vectors_config={"bge_sparse": SparseVectorParams(index=SparseIndexParams(on_disk=False))}
vector=embedding,
payload={"file_name": file_name, "content": content[:3000], "indexed_at": datetime.now().isoformat()}
)]
) )
return True
except: return False async def index_document(filename: str, content: str, collection: str) -> bool:
try:
await ensure_collection(collection)
chunks = [content[i:i+3000] for i in range(0, len(content), 3000)]
qdrant = AsyncQdrantClient(url=QDRANT_URL)
points = []
for i, chunk in enumerate(chunks):
# Ottieni embedding (assume che get_embeddings ritorni la lista float)
# Nota: Se hai aggiornato l'API .243 per ritornare un dict {"dense": ...},
# devi aggiornare get_embeddings per estrarre ["dense"]!
# Vedere funzione get_embeddings aggiornata sotto
emb = await get_embeddings(chunk)
if emb:
points.append(PointStruct(
id=str(uuid.uuid4()),
# Vettori nominati
vector={"bge_dense": emb},
payload={"file_name": filename, "content": chunk, "chunk_id": i}
))
if points:
await qdrant.upsert(collection_name=collection, points=points)
return True
except Exception as e:
print(f"Index Error: {e}")
return False
async def search_qdrant(query: str, collection: str) -> str: async def search_qdrant(query: str, collection: str) -> str:
try: try:
client = await get_qdrant_client() client = AsyncQdrantClient(url=QDRANT_URL)
if not await client.collection_exists(collection): return "" if not await client.collection_exists(collection): return ""
emb = await get_embeddings(query) emb = await get_embeddings(query)
if not emb: return "" if not emb: return ""
res = await client.query_points(collection_name=collection, query=emb, limit=3)
return "\n\n".join([hit.payload['content'] for hit in res.points if hit.payload]) # Ricerca mirata sul vettore BGE
res = await client.query_points(
collection_name=collection,
query=emb,
using="bge_dense", # Specifica quale indice usare
limit=5
)
return "\n\n".join([f"📄 {hit.payload['file_name']}:\n{hit.payload['content']}" for hit in res.points if hit.payload])
except: return "" except: return ""
# === CHAINLIT HANDLERS === # === CHAT LOGIC ===
@cl.on_chat_start @cl.on_chat_start
async def on_chat_start(): async def on_chat_start():
user = cl.user_session.get("user") user = cl.user_session.get("user")
if not user: if not user:
# Fallback locale se non c'è auth email = "guest@local"
user_email = "guest@local" profile = get_user_profile(email)
profile = get_user_profile(user_email)
else: else:
user_email = user.identifier email = user.identifier
# I metadati sono già popolati dalla callback oauth profile = USER_PROFILES.get(email, get_user_profile("guest"))
profile = USER_PROFILES.get(user_email, get_user_profile("guest"))
# Salva in sessione cl.user_session.set("email", email)
cl.user_session.set("email", user_email)
cl.user_session.set("role", profile["role"]) cl.user_session.set("role", profile["role"])
cl.user_session.set("workspace", profile["workspace"]) cl.user_session.set("workspace", profile["workspace"])
cl.user_session.set("rag_collection", profile["rag_collection"]) cl.user_session.set("rag_collection", profile["rag_collection"])
@ -254,91 +253,65 @@ async def on_chat_start():
create_workspace(profile["workspace"]) create_workspace(profile["workspace"])
# === SETTINGS WIDGETS === settings = [
settings_widgets = [ cl.input_widget.Select(id="model", label="Modello", values=["glm-4.6:cloud", "llama3"], initial_value="glm-4.6:cloud"),
cl.input_widget.Select( cl.input_widget.Slider(id="temp", label="Temperatura", initial=0.5, min=0, max=1, step=0.1)
id="model",
label="Modello AI",
values=["glm-4.6:cloud", "llama3.2", "mistral", "qwen2.5-coder:32b"],
initial_value="glm-4.6:cloud",
),
cl.input_widget.Slider(
id="temperature",
label="Temperatura",
initial=0.7, min=0, max=2, step=0.1,
),
] ]
if profile["role"] == "admin": if profile["role"] == "admin":
settings_widgets.append(cl.input_widget.Switch(id="rag_enabled", label="Abilita RAG", initial=True)) settings.append(cl.input_widget.Switch(id="rag", label="RAG Attivo", initial=True))
await cl.ChatSettings(settings_widgets).send() await cl.ChatSettings(settings).send()
await cl.Message(content=f"👋 Ciao **{profile['name']}**! Pronto per l'automazione.").send()
await cl.Message(
content=f"👋 Ciao **{profile['name']}**!\n"
f"Ruolo: `{profile['role']}` | Workspace: `{profile['workspace']}`\n"
).send()
@cl.on_settings_update @cl.on_settings_update
async def on_settings_update(settings): async def on_settings_update(s): cl.user_session.set("settings", s)
cl.user_session.set("settings", settings)
await cl.Message(content="✅ Impostazioni aggiornate").send()
@cl.on_message @cl.on_message
async def on_message(message: cl.Message): async def on_message(message: cl.Message):
workspace = cl.user_session.get("workspace") workspace = cl.user_session.get("workspace")
rag_collection = cl.user_session.get("rag_collection") rag_collection = cl.user_session.get("rag_collection")
user_role = cl.user_session.get("role") role = cl.user_session.get("role")
show_code = cl.user_session.get("show_code")
settings = cl.user_session.get("settings", {}) settings = cl.user_session.get("settings", {})
model = settings.get("model", "glm-4.6:cloud")
temperature = settings.get("temperature", 0.7)
rag_enabled = settings.get("rag_enabled", True) if user_role == "admin" else True
# 1. GESTIONE FILE # 1. FILE UPLOAD (PDF & EXCEL)
if message.elements: if message.elements:
for element in message.elements: for el in message.elements:
dest = os.path.join(WORKSPACES_DIR, workspace, element.name) dest = os.path.join(WORKSPACES_DIR, workspace, el.name)
shutil.copy(element.path, dest) shutil.copy(el.path, dest)
if element.name.endswith(".pdf"):
text = extract_text_from_pdf(dest)
if text:
await index_document(element.name, text, rag_collection)
await cl.Message(content=f"✅ **{element.name}** indicizzato.").send()
# 2. RAG content = ""
context = "" if el.name.endswith(".pdf"):
if rag_enabled: content = extract_text_from_pdf(dest)
context = await search_qdrant(message.content, rag_collection) elif el.name.endswith((".xlsx", ".xls")):
await cl.Message(content=f"📊 Analisi Excel **{el.name}**...").send()
content = extract_text_from_excel(dest)
system_prompt = "Sei un assistente esperto." if content:
if context: system_prompt += f"\n\nCONTESTO:\n{context}" ok = await index_document(el.name, content, rag_collection)
icon = "" if ok else ""
await cl.Message(content=f"{icon} **{el.name}** elaborato.").send()
# 2. RAG & GENERATION
rag_active = settings.get("rag", True) if role == "admin" else True
context = await search_qdrant(message.content, rag_collection) if rag_active else ""
prompt = "Sei un esperto di automazione industriale."
if context: prompt += f"\n\nUSA QUESTO CONTESTO (Manuali/Excel):\n{context}"
# 3. GENERAZIONE
client = ollama.AsyncClient(host=OLLAMA_URL)
msg = cl.Message(content="") msg = cl.Message(content="")
await msg.send() await msg.send()
stream = await client.chat( try:
model=model, client = ollama.AsyncClient(host=OLLAMA_URL)
messages=[{"role": "system", "content": system_prompt}, {"role": "user", "content": message.content}], stream = await client.chat(
options={"temperature": temperature}, model=settings.get("model", "glm-4.6:cloud"),
stream=True messages=[{"role": "system", "content": prompt}, {"role": "user", "content": message.content}],
) options={"temperature": settings.get("temp", 0.5)},
stream=True
)
async for chunk in stream:
await msg.stream_token(chunk['message']['content'])
except Exception as e:
await msg.stream_token(f"Errore connessione AI: {e}")
full_resp = ""
async for chunk in stream:
token = chunk['message']['content']
full_resp += token
await msg.stream_token(token)
await msg.update() await msg.update()
# 4. SALVATAGGIO CODICE
if show_code:
blocks = re.findall(r"``````", full_resp, re.DOTALL)
elements = []
for code in blocks:
path = save_code_to_file(code.strip(), workspace)
elements.append(cl.File(name=os.path.basename(path), path=path, display="inline"))
if elements:
await cl.Message(content="💾 Codice salvato", elements=elements).send()

View File

@ -27,3 +27,7 @@ sniffio
aiohttp aiohttp
boto3>=1.28.0 boto3>=1.28.0
azure-storage-file-datalake>=12.14.0 azure-storage-file-datalake>=12.14.0
# NUOVI PER EXCEL
pandas
openpyxl
tabulate