Compare commits

...

2 Commits

Author SHA1 Message Date
AI Station Server bffd9aa249 Fix: Smart chunking per Excel e Hybrid Search funzionante 2025-12-30 17:06:13 +01:00
AI Station Server 9cef64f9ea implementazione BGE-M3 Dense 2025-12-30 08:51:10 +01:00
8 changed files with 226 additions and 193 deletions

413
app.py
View File

@ -2,17 +2,19 @@ import os
import re import re
import uuid import uuid
import shutil import shutil
import pandas as pd # NUOVO: Gestione Excel
import httpx # NUOVO: Chiamate API Remote
from datetime import datetime from datetime import datetime
from typing import Optional, Dict, List from typing import Optional, Dict, List
import chainlit as cl import chainlit as cl
import ollama import ollama
import fitz # PyMuPDF import fitz # PyMuPDF
from qdrant_client import AsyncQdrantClient from qdrant_client import AsyncQdrantClient
from qdrant_client.models import PointStruct, Distance, VectorParams from qdrant_client import models
from qdrant_client.models import PointStruct, Distance, VectorParams, SparseVectorParams, SparseIndexParams
from chainlit.data.sql_alchemy import SQLAlchemyDataLayer from chainlit.data.sql_alchemy import SQLAlchemyDataLayer
# === FIX IMPORT ROBUSTO === # === FIX IMPORT ===
# Gestisce le differenze tra le versioni di Chainlit 2.x
try: try:
from chainlit.data.storage_clients import BaseStorageClient from chainlit.data.storage_clients import BaseStorageClient
except ImportError: except ImportError:
@ -23,8 +25,11 @@ except ImportError:
# === CONFIGURAZIONE === # === CONFIGURAZIONE ===
DATABASE_URL = os.getenv("DATABASE_URL", "postgresql+asyncpg://ai_user:secure_password_here@postgres:5432/ai_station") DATABASE_URL = os.getenv("DATABASE_URL", "postgresql+asyncpg://ai_user:secure_password_here@postgres:5432/ai_station")
# PUNTANO AL SERVER .243 (Il "Cervello")
OLLAMA_URL = os.getenv("OLLAMA_URL", "http://192.168.1.243:11434") OLLAMA_URL = os.getenv("OLLAMA_URL", "http://192.168.1.243:11434")
BGE_API_URL = os.getenv("BGE_API_URL", "http://192.168.1.243:8001")
QDRANT_URL = os.getenv("QDRANT_URL", "http://qdrant:6333") QDRANT_URL = os.getenv("QDRANT_URL", "http://qdrant:6333")
WORKSPACES_DIR = "./workspaces" WORKSPACES_DIR = "./workspaces"
STORAGE_DIR = "./.files" STORAGE_DIR = "./.files"
@ -75,178 +80,228 @@ USER_PROFILES = {
} }
} }
# === CUSTOM LOCAL STORAGE CLIENT (FIXED) ===# Questa classe ora implementa tutti i metodi astratti richiesti da Chainlit 2.8.3 # === STORAGE CLIENT ===
class LocalStorageClient(BaseStorageClient): class LocalStorageClient(BaseStorageClient):
"""Storage locale su filesystem per file/elementi"""
def __init__(self, storage_path: str): def __init__(self, storage_path: str):
self.storage_path = storage_path self.storage_path = storage_path
os.makedirs(storage_path, exist_ok=True) os.makedirs(storage_path, exist_ok=True)
async def upload_file( async def upload_file(self, object_key: str, data: bytes, mime: str = "application/octet-stream", overwrite: bool = True) -> Dict[str, str]:
self,
object_key: str,
data: bytes,
mime: str = "application/octet-stream",
overwrite: bool = True,
) -> Dict[str, str]:
file_path = os.path.join(self.storage_path, object_key) file_path = os.path.join(self.storage_path, object_key)
os.makedirs(os.path.dirname(file_path), exist_ok=True) os.makedirs(os.path.dirname(file_path), exist_ok=True)
with open(file_path, "wb") as f: with open(file_path, "wb") as f: f.write(data)
f.write(data)
return {"object_key": object_key, "url": f"/files/{object_key}"} return {"object_key": object_key, "url": f"/files/{object_key}"}
# Implementazione metodi obbligatori mancanti nella versione precedente async def get_read_url(self, object_key: str) -> str: return f"/files/{object_key}"
async def get_read_url(self, object_key: str) -> str:
return f"/files/{object_key}"
async def delete_file(self, object_key: str) -> bool: async def delete_file(self, object_key: str) -> bool:
file_path = os.path.join(self.storage_path, object_key) path = os.path.join(self.storage_path, object_key)
if os.path.exists(file_path): if os.path.exists(path): os.remove(path); return True
os.remove(file_path)
return True
return False return False
async def close(self): pass
async def close(self):
pass
# === DATA LAYER ===
@cl.data_layer @cl.data_layer
def get_data_layer(): def get_data_layer():
return SQLAlchemyDataLayer( return SQLAlchemyDataLayer(conninfo=DATABASE_URL, user_thread_limit=1000, storage_provider=LocalStorageClient(STORAGE_DIR))
conninfo=DATABASE_URL,
user_thread_limit=1000,
storage_provider=LocalStorageClient(storage_path=STORAGE_DIR)
)
# === OAUTH CALLBACK === # === OAUTH ===
@cl.oauth_callback @cl.oauth_callback
def oauth_callback( def oauth_callback(provider_id: str, token: str, raw_user_data: Dict[str, str], default_user: cl.User) -> Optional[cl.User]:
provider_id: str,
token: str,
raw_user_data: Dict[str, str],
default_user: cl.User,
) -> Optional[cl.User]:
if provider_id == "google": if provider_id == "google":
email = raw_user_data.get("email", "").lower() email = raw_user_data.get("email", "").lower()
# Verifica se utente è autorizzato (opzionale: blocca se non in lista)
# if email not in USER_PROFILES:
# return None
# Recupera profilo o usa default Guest
profile = USER_PROFILES.get(email, get_user_profile("guest")) profile = USER_PROFILES.get(email, get_user_profile("guest"))
default_user.metadata.update({ default_user.metadata.update({
"picture": raw_user_data.get("picture", ""), "picture": raw_user_data.get("picture", ""),
"role": profile["role"], "role": profile["role"], "workspace": profile["workspace"],
"workspace": profile["workspace"], "rag_collection": profile["rag_collection"], "capabilities": profile["capabilities"],
"rag_collection": profile["rag_collection"], "show_code": profile["show_code"], "display_name": profile["name"]
"capabilities": profile["capabilities"],
"show_code": profile["show_code"],
"display_name": profile["name"]
}) })
return default_user return default_user
return default_user return default_user
# === UTILITY FUNCTIONS === def get_user_profile(email: str) -> Dict:
def get_user_profile(user_email: str) -> Dict: return USER_PROFILES.get(email.lower(), {"role": "guest", "name": "Ospite", "workspace": "guest_workspace", "rag_collection": "documents", "show_code": False})
return USER_PROFILES.get(user_email.lower(), {
"role": "guest",
"name": "Ospite",
"workspace": "guest_workspace",
"rag_collection": "documents",
"capabilities": [],
"show_code": False
})
def create_workspace(workspace_name: str) -> str: def create_workspace(name: str) -> str:
path = os.path.join(WORKSPACES_DIR, workspace_name) path = os.path.join(WORKSPACES_DIR, name)
os.makedirs(path, exist_ok=True) os.makedirs(path, exist_ok=True)
return path return path
def save_code_to_file(code: str, workspace: str) -> str: def save_code_to_file(code: str, workspace: str) -> str:
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") ts = datetime.now().strftime("%Y%m%d_%H%M%S")
file_name = f"code_{timestamp}.py" path = os.path.join(WORKSPACES_DIR, workspace, f"code_{ts}.py")
file_path = os.path.join(WORKSPACES_DIR, workspace, file_name) with open(path, "w", encoding="utf-8") as f: f.write(code)
with open(file_path, "w", encoding="utf-8") as f: return path
f.write(code)
return file_path
def extract_text_from_pdf(pdf_path: str) -> str: # === PARSING DOCUMENTI ===
def extract_text_from_pdf(path: str) -> str:
try: try:
doc = fitz.open(pdf_path) doc = fitz.open(path)
text = "\n".join([page.get_text() for page in doc]) return "\n".join([page.get_text() for page in doc])
doc.close() except: return ""
return text
except Exception: def extract_text_from_excel(path: str) -> str:
"""Estrae testo da Excel convertendo i fogli in Markdown"""
try:
xl = pd.read_excel(path, sheet_name=None)
text_content = []
for sheet, df in xl.items():
text_content.append(f"\n--- Foglio Excel: {sheet} ---\n")
# Pulisce NaN e converte in stringa
clean_df = df.fillna("").astype(str)
text_content.append(clean_df.to_markdown(index=False))
return "\n".join(text_content)
except Exception as e:
print(f"❌ Errore Excel: {e}")
return "" return ""
# === QDRANT FUNCTIONS === # === AI & EMBEDDINGS (Remoto) ===
async def get_qdrant_client() -> AsyncQdrantClient: async def get_embeddings(text: str) -> dict:
return AsyncQdrantClient(url=QDRANT_URL) """Ritorna dict con keys 'dense' e 'sparse'"""
try:
async with httpx.AsyncClient(timeout=30.0) as client:
resp = await client.post(
f"{BGE_API_URL}/embed",
json={"texts": [text]}
)
if resp.status_code == 200:
data = resp.json()
# La nuova API ritorna {"data": [{"dense":..., "sparse":...}]}
return data["data"][0]
except Exception as e:
print(f"⚠️ Errore Embedding: {e}")
return {}
async def ensure_collection(collection_name: str): async def ensure_collection(name: str):
client = await get_qdrant_client() client = AsyncQdrantClient(url=QDRANT_URL)
if not await client.collection_exists(collection_name): if not await client.collection_exists(name):
await client.create_collection( await client.create_collection(
collection_name=collection_name, collection_name=name,
vectors_config=VectorParams(size=768, distance=Distance.COSINE) vectors_config={
"bge_dense": VectorParams(size=1024, distance=Distance.COSINE)
},
# ABILITIAMO LO SPARSE VECTOR
sparse_vectors_config={
"bge_sparse": SparseVectorParams(
index=SparseIndexParams(
on_disk=False, # True se hai poca RAM, ma hai 32GB quindi False è meglio
)
)
}
) )
async def get_embeddings(text: str) -> list: def chunk_text_by_lines(text: str, max_chars: int = 2500) -> List[str]:
client = ollama.Client(host=OLLAMA_URL) """Taglia il testo raggruppando linee intere senza spezzarle."""
try: lines = text.split('\n')
response = client.embed(model='nomic-embed-text', input=text[:2000]) chunks = []
if 'embeddings' in response: return response['embeddings'][0] current_chunk = ""
return response.get('embedding', [])
except: return [] for line in lines:
# Se la riga è troppo lunga da sola (caso raro), la tagliamo
if len(line) > max_chars:
if current_chunk: chunks.append(current_chunk)
chunks.append(line[:max_chars])
current_chunk = ""
continue
# Se aggiungere la riga supera il limite, salviamo il chunk attuale
if len(current_chunk) + len(line) > max_chars:
chunks.append(current_chunk)
current_chunk = line + "\n"
else:
current_chunk += line + "\n"
if current_chunk:
chunks.append(current_chunk)
return chunks
async def index_document(file_name: str, content: str, collection_name: str) -> bool: async def index_document(filename: str, content: str, collection: str) -> bool:
try: try:
await ensure_collection(collection_name) await ensure_collection(collection)
embedding = await get_embeddings(content)
if not embedding: return False
qdrant = await get_qdrant_client() # --- MODIFICA QUI: Usiamo il chunking intelligente invece di quello brutale ---
await qdrant.upsert( # Vecchio: chunks = [content[i:i+3000] for i in range(0, len(content), 3000)]
collection_name=collection_name, chunks = chunk_text_by_lines(content, max_chars=2000)
points=[PointStruct( # ---------------------------------------------------------------------------
id=str(uuid.uuid4()),
vector=embedding, qdrant = AsyncQdrantClient(url=QDRANT_URL)
payload={"file_name": file_name, "content": content[:3000], "indexed_at": datetime.now().isoformat()} points = []
)]
) for i, chunk in enumerate(chunks):
return True vectors = await get_embeddings(chunk)
except: return False
if vectors:
points.append(PointStruct(
id=str(uuid.uuid4()),
vector={
"bge_dense": vectors["dense"],
"bge_sparse": models.SparseVector(
indices=vectors["sparse"]["indices"],
values=vectors["sparse"]["values"]
)
},
payload={"file_name": filename, "content": chunk, "chunk_id": i}
))
if points:
await qdrant.upsert(collection_name=collection, points=points)
return True
except Exception as e:
print(f"Index Error: {e}")
return False
async def search_qdrant(query: str, collection: str) -> str: async def search_qdrant(query: str, collection: str) -> str:
try: try:
client = await get_qdrant_client() client = AsyncQdrantClient(url=QDRANT_URL)
if not await client.collection_exists(collection): return "" if not await client.collection_exists(collection): return ""
emb = await get_embeddings(query)
if not emb: return "" vectors = await get_embeddings(query)
res = await client.query_points(collection_name=collection, query=emb, limit=3) if not vectors: return ""
return "\n\n".join([hit.payload['content'] for hit in res.points if hit.payload])
except: return "" # HYBRID QUERY (RRF FUSION)
res = await client.query_points(
# === CHAINLIT HANDLERS === collection_name=collection,
prefetch=[
models.Prefetch(
query=vectors["dense"],
using="bge_dense",
limit=10,
),
models.Prefetch(
query=models.SparseVector(
indices=vectors["sparse"]["indices"],
values=vectors["sparse"]["values"]
),
using="bge_sparse",
limit=20,
),
],
# --- CORREZIONE QUI SOTTO (da 'method' a 'fusion') ---
query=models.FusionQuery(fusion=models.Fusion.RRF),
limit=12
)
return "\n\n".join([f"📄 {hit.payload['file_name']}:\n{hit.payload['content']}" for hit in res.points if hit.payload])
except Exception as e:
print(f"Search Error: {e}") # Questo è quello che vedevi nei log
return ""
return "\n\n".join([f"📄 {hit.payload['file_name']}:\n{hit.payload['content']}" for hit in res.points if hit.payload])
except Exception as e:
print(f"Search Error: {e}")
return ""
# === CHAT LOGIC ===
@cl.on_chat_start @cl.on_chat_start
async def on_chat_start(): async def on_chat_start():
user = cl.user_session.get("user") user = cl.user_session.get("user")
if not user: if not user:
# Fallback locale se non c'è auth email = "guest@local"
user_email = "guest@local" profile = get_user_profile(email)
profile = get_user_profile(user_email)
else: else:
user_email = user.identifier email = user.identifier
# I metadati sono già popolati dalla callback oauth profile = USER_PROFILES.get(email, get_user_profile("guest"))
profile = USER_PROFILES.get(user_email, get_user_profile("guest"))
# Salva in sessione cl.user_session.set("email", email)
cl.user_session.set("email", user_email)
cl.user_session.set("role", profile["role"]) cl.user_session.set("role", profile["role"])
cl.user_session.set("workspace", profile["workspace"]) cl.user_session.set("workspace", profile["workspace"])
cl.user_session.set("rag_collection", profile["rag_collection"]) cl.user_session.set("rag_collection", profile["rag_collection"])
@ -254,91 +309,65 @@ async def on_chat_start():
create_workspace(profile["workspace"]) create_workspace(profile["workspace"])
# === SETTINGS WIDGETS === settings = [
settings_widgets = [ cl.input_widget.Select(id="model", label="Modello", values=["glm-4.6:cloud", "llama3"], initial_value="glm-4.6:cloud"),
cl.input_widget.Select( cl.input_widget.Slider(id="temp", label="Temperatura", initial=0.5, min=0, max=1, step=0.1)
id="model",
label="Modello AI",
values=["glm-4.6:cloud", "llama3.2", "mistral", "qwen2.5-coder:32b"],
initial_value="glm-4.6:cloud",
),
cl.input_widget.Slider(
id="temperature",
label="Temperatura",
initial=0.7, min=0, max=2, step=0.1,
),
] ]
if profile["role"] == "admin": if profile["role"] == "admin":
settings_widgets.append(cl.input_widget.Switch(id="rag_enabled", label="Abilita RAG", initial=True)) settings.append(cl.input_widget.Switch(id="rag", label="RAG Attivo", initial=True))
await cl.ChatSettings(settings_widgets).send() await cl.ChatSettings(settings).send()
await cl.Message(content=f"👋 Ciao **{profile['name']}**! Pronto per l'automazione.").send()
await cl.Message(
content=f"👋 Ciao **{profile['name']}**!\n"
f"Ruolo: `{profile['role']}` | Workspace: `{profile['workspace']}`\n"
).send()
@cl.on_settings_update @cl.on_settings_update
async def on_settings_update(settings): async def on_settings_update(s): cl.user_session.set("settings", s)
cl.user_session.set("settings", settings)
await cl.Message(content="✅ Impostazioni aggiornate").send()
@cl.on_message @cl.on_message
async def on_message(message: cl.Message): async def on_message(message: cl.Message):
workspace = cl.user_session.get("workspace") workspace = cl.user_session.get("workspace")
rag_collection = cl.user_session.get("rag_collection") rag_collection = cl.user_session.get("rag_collection")
user_role = cl.user_session.get("role") role = cl.user_session.get("role")
show_code = cl.user_session.get("show_code")
settings = cl.user_session.get("settings", {}) settings = cl.user_session.get("settings", {})
model = settings.get("model", "glm-4.6:cloud")
temperature = settings.get("temperature", 0.7) # 1. FILE UPLOAD (PDF & EXCEL)
rag_enabled = settings.get("rag_enabled", True) if user_role == "admin" else True
# 1. GESTIONE FILE
if message.elements: if message.elements:
for element in message.elements: for el in message.elements:
dest = os.path.join(WORKSPACES_DIR, workspace, element.name) dest = os.path.join(WORKSPACES_DIR, workspace, el.name)
shutil.copy(element.path, dest) shutil.copy(el.path, dest)
if element.name.endswith(".pdf"):
text = extract_text_from_pdf(dest) content = ""
if text: if el.name.endswith(".pdf"):
await index_document(element.name, text, rag_collection) content = extract_text_from_pdf(dest)
await cl.Message(content=f"✅ **{element.name}** indicizzato.").send() elif el.name.endswith((".xlsx", ".xls")):
await cl.Message(content=f"📊 Analisi Excel **{el.name}**...").send()
content = extract_text_from_excel(dest)
if content:
ok = await index_document(el.name, content, rag_collection)
icon = "" if ok else ""
await cl.Message(content=f"{icon} **{el.name}** elaborato.").send()
# 2. RAG # 2. RAG & GENERATION
context = "" rag_active = settings.get("rag", True) if role == "admin" else True
if rag_enabled: context = await search_qdrant(message.content, rag_collection) if rag_active else ""
context = await search_qdrant(message.content, rag_collection)
system_prompt = "Sei un assistente esperto." prompt = "Sei un esperto di automazione industriale."
if context: system_prompt += f"\n\nCONTESTO:\n{context}" if context: prompt += f"\n\nUSA QUESTO CONTESTO (Manuali/Excel):\n{context}"
# 3. GENERAZIONE
client = ollama.AsyncClient(host=OLLAMA_URL)
msg = cl.Message(content="") msg = cl.Message(content="")
await msg.send() await msg.send()
stream = await client.chat( try:
model=model, client = ollama.AsyncClient(host=OLLAMA_URL)
messages=[{"role": "system", "content": system_prompt}, {"role": "user", "content": message.content}], stream = await client.chat(
options={"temperature": temperature}, model=settings.get("model", "glm-4.6:cloud"),
stream=True messages=[{"role": "system", "content": prompt}, {"role": "user", "content": message.content}],
) options={"temperature": settings.get("temp", 0.5)},
stream=True
)
async for chunk in stream:
await msg.stream_token(chunk['message']['content'])
except Exception as e:
await msg.stream_token(f"Errore connessione AI: {e}")
full_resp = "" await msg.update()
async for chunk in stream:
token = chunk['message']['content']
full_resp += token
await msg.stream_token(token)
await msg.update()
# 4. SALVATAGGIO CODICE
if show_code:
blocks = re.findall(r"``````", full_resp, re.DOTALL)
elements = []
for code in blocks:
path = save_code_to_file(code.strip(), workspace)
elements.append(cl.File(name=os.path.basename(path), path=path, display="inline"))
if elements:
await cl.Message(content="💾 Codice salvato", elements=elements).send()

View File

@ -26,4 +26,8 @@ aiofiles>=23.0.0
sniffio sniffio
aiohttp aiohttp
boto3>=1.28.0 boto3>=1.28.0
azure-storage-file-datalake>=12.14.0 azure-storage-file-datalake>=12.14.0
# NUOVI PER EXCEL
pandas
openpyxl
tabulate