Compare commits
2 Commits
main
...
feature/ra
| Author | SHA1 | Date |
|---|---|---|
|
|
bffd9aa249 | |
|
|
9cef64f9ea |
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
397
app.py
397
app.py
|
|
@ -2,17 +2,19 @@ import os
|
|||
import re
|
||||
import uuid
|
||||
import shutil
|
||||
import pandas as pd # NUOVO: Gestione Excel
|
||||
import httpx # NUOVO: Chiamate API Remote
|
||||
from datetime import datetime
|
||||
from typing import Optional, Dict, List
|
||||
import chainlit as cl
|
||||
import ollama
|
||||
import fitz # PyMuPDF
|
||||
from qdrant_client import AsyncQdrantClient
|
||||
from qdrant_client.models import PointStruct, Distance, VectorParams
|
||||
from qdrant_client import models
|
||||
from qdrant_client.models import PointStruct, Distance, VectorParams, SparseVectorParams, SparseIndexParams
|
||||
from chainlit.data.sql_alchemy import SQLAlchemyDataLayer
|
||||
|
||||
# === FIX IMPORT ROBUSTO ===
|
||||
# Gestisce le differenze tra le versioni di Chainlit 2.x
|
||||
# === FIX IMPORT ===
|
||||
try:
|
||||
from chainlit.data.storage_clients import BaseStorageClient
|
||||
except ImportError:
|
||||
|
|
@ -23,8 +25,11 @@ except ImportError:
|
|||
|
||||
# === CONFIGURAZIONE ===
|
||||
DATABASE_URL = os.getenv("DATABASE_URL", "postgresql+asyncpg://ai_user:secure_password_here@postgres:5432/ai_station")
|
||||
# PUNTANO AL SERVER .243 (Il "Cervello")
|
||||
OLLAMA_URL = os.getenv("OLLAMA_URL", "http://192.168.1.243:11434")
|
||||
BGE_API_URL = os.getenv("BGE_API_URL", "http://192.168.1.243:8001")
|
||||
QDRANT_URL = os.getenv("QDRANT_URL", "http://qdrant:6333")
|
||||
|
||||
WORKSPACES_DIR = "./workspaces"
|
||||
STORAGE_DIR = "./.files"
|
||||
|
||||
|
|
@ -75,178 +80,228 @@ USER_PROFILES = {
|
|||
}
|
||||
}
|
||||
|
||||
# === CUSTOM LOCAL STORAGE CLIENT (FIXED) ===# Questa classe ora implementa tutti i metodi astratti richiesti da Chainlit 2.8.3
|
||||
# === STORAGE CLIENT ===
|
||||
class LocalStorageClient(BaseStorageClient):
|
||||
"""Storage locale su filesystem per file/elementi"""
|
||||
|
||||
def __init__(self, storage_path: str):
|
||||
self.storage_path = storage_path
|
||||
os.makedirs(storage_path, exist_ok=True)
|
||||
|
||||
async def upload_file(
|
||||
self,
|
||||
object_key: str,
|
||||
data: bytes,
|
||||
mime: str = "application/octet-stream",
|
||||
overwrite: bool = True,
|
||||
) -> Dict[str, str]:
|
||||
async def upload_file(self, object_key: str, data: bytes, mime: str = "application/octet-stream", overwrite: bool = True) -> Dict[str, str]:
|
||||
file_path = os.path.join(self.storage_path, object_key)
|
||||
os.makedirs(os.path.dirname(file_path), exist_ok=True)
|
||||
with open(file_path, "wb") as f:
|
||||
f.write(data)
|
||||
with open(file_path, "wb") as f: f.write(data)
|
||||
return {"object_key": object_key, "url": f"/files/{object_key}"}
|
||||
|
||||
# Implementazione metodi obbligatori mancanti nella versione precedente
|
||||
async def get_read_url(self, object_key: str) -> str:
|
||||
return f"/files/{object_key}"
|
||||
|
||||
async def get_read_url(self, object_key: str) -> str: return f"/files/{object_key}"
|
||||
async def delete_file(self, object_key: str) -> bool:
|
||||
file_path = os.path.join(self.storage_path, object_key)
|
||||
if os.path.exists(file_path):
|
||||
os.remove(file_path)
|
||||
return True
|
||||
path = os.path.join(self.storage_path, object_key)
|
||||
if os.path.exists(path): os.remove(path); return True
|
||||
return False
|
||||
async def close(self): pass
|
||||
|
||||
async def close(self):
|
||||
pass
|
||||
|
||||
# === DATA LAYER ===
|
||||
@cl.data_layer
|
||||
def get_data_layer():
|
||||
return SQLAlchemyDataLayer(
|
||||
conninfo=DATABASE_URL,
|
||||
user_thread_limit=1000,
|
||||
storage_provider=LocalStorageClient(storage_path=STORAGE_DIR)
|
||||
)
|
||||
return SQLAlchemyDataLayer(conninfo=DATABASE_URL, user_thread_limit=1000, storage_provider=LocalStorageClient(STORAGE_DIR))
|
||||
|
||||
# === OAUTH CALLBACK ===
|
||||
# === OAUTH ===
|
||||
@cl.oauth_callback
|
||||
def oauth_callback(
|
||||
provider_id: str,
|
||||
token: str,
|
||||
raw_user_data: Dict[str, str],
|
||||
default_user: cl.User,
|
||||
) -> Optional[cl.User]:
|
||||
def oauth_callback(provider_id: str, token: str, raw_user_data: Dict[str, str], default_user: cl.User) -> Optional[cl.User]:
|
||||
if provider_id == "google":
|
||||
email = raw_user_data.get("email", "").lower()
|
||||
|
||||
# Verifica se utente è autorizzato (opzionale: blocca se non in lista)
|
||||
# if email not in USER_PROFILES:
|
||||
# return None
|
||||
|
||||
# Recupera profilo o usa default Guest
|
||||
profile = USER_PROFILES.get(email, get_user_profile("guest"))
|
||||
|
||||
default_user.metadata.update({
|
||||
"picture": raw_user_data.get("picture", ""),
|
||||
"role": profile["role"],
|
||||
"workspace": profile["workspace"],
|
||||
"rag_collection": profile["rag_collection"],
|
||||
"capabilities": profile["capabilities"],
|
||||
"show_code": profile["show_code"],
|
||||
"display_name": profile["name"]
|
||||
"role": profile["role"], "workspace": profile["workspace"],
|
||||
"rag_collection": profile["rag_collection"], "capabilities": profile["capabilities"],
|
||||
"show_code": profile["show_code"], "display_name": profile["name"]
|
||||
})
|
||||
return default_user
|
||||
return default_user
|
||||
|
||||
# === UTILITY FUNCTIONS ===
|
||||
def get_user_profile(user_email: str) -> Dict:
|
||||
return USER_PROFILES.get(user_email.lower(), {
|
||||
"role": "guest",
|
||||
"name": "Ospite",
|
||||
"workspace": "guest_workspace",
|
||||
"rag_collection": "documents",
|
||||
"capabilities": [],
|
||||
"show_code": False
|
||||
})
|
||||
def get_user_profile(email: str) -> Dict:
|
||||
return USER_PROFILES.get(email.lower(), {"role": "guest", "name": "Ospite", "workspace": "guest_workspace", "rag_collection": "documents", "show_code": False})
|
||||
|
||||
def create_workspace(workspace_name: str) -> str:
|
||||
path = os.path.join(WORKSPACES_DIR, workspace_name)
|
||||
def create_workspace(name: str) -> str:
|
||||
path = os.path.join(WORKSPACES_DIR, name)
|
||||
os.makedirs(path, exist_ok=True)
|
||||
return path
|
||||
|
||||
def save_code_to_file(code: str, workspace: str) -> str:
|
||||
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
||||
file_name = f"code_{timestamp}.py"
|
||||
file_path = os.path.join(WORKSPACES_DIR, workspace, file_name)
|
||||
with open(file_path, "w", encoding="utf-8") as f:
|
||||
f.write(code)
|
||||
return file_path
|
||||
ts = datetime.now().strftime("%Y%m%d_%H%M%S")
|
||||
path = os.path.join(WORKSPACES_DIR, workspace, f"code_{ts}.py")
|
||||
with open(path, "w", encoding="utf-8") as f: f.write(code)
|
||||
return path
|
||||
|
||||
def extract_text_from_pdf(pdf_path: str) -> str:
|
||||
# === PARSING DOCUMENTI ===
|
||||
def extract_text_from_pdf(path: str) -> str:
|
||||
try:
|
||||
doc = fitz.open(pdf_path)
|
||||
text = "\n".join([page.get_text() for page in doc])
|
||||
doc.close()
|
||||
return text
|
||||
except Exception:
|
||||
doc = fitz.open(path)
|
||||
return "\n".join([page.get_text() for page in doc])
|
||||
except: return ""
|
||||
|
||||
def extract_text_from_excel(path: str) -> str:
|
||||
"""Estrae testo da Excel convertendo i fogli in Markdown"""
|
||||
try:
|
||||
xl = pd.read_excel(path, sheet_name=None)
|
||||
text_content = []
|
||||
for sheet, df in xl.items():
|
||||
text_content.append(f"\n--- Foglio Excel: {sheet} ---\n")
|
||||
# Pulisce NaN e converte in stringa
|
||||
clean_df = df.fillna("").astype(str)
|
||||
text_content.append(clean_df.to_markdown(index=False))
|
||||
return "\n".join(text_content)
|
||||
except Exception as e:
|
||||
print(f"❌ Errore Excel: {e}")
|
||||
return ""
|
||||
|
||||
# === QDRANT FUNCTIONS ===
|
||||
async def get_qdrant_client() -> AsyncQdrantClient:
|
||||
return AsyncQdrantClient(url=QDRANT_URL)
|
||||
# === AI & EMBEDDINGS (Remoto) ===
|
||||
async def get_embeddings(text: str) -> dict:
|
||||
"""Ritorna dict con keys 'dense' e 'sparse'"""
|
||||
try:
|
||||
async with httpx.AsyncClient(timeout=30.0) as client:
|
||||
resp = await client.post(
|
||||
f"{BGE_API_URL}/embed",
|
||||
json={"texts": [text]}
|
||||
)
|
||||
if resp.status_code == 200:
|
||||
data = resp.json()
|
||||
# La nuova API ritorna {"data": [{"dense":..., "sparse":...}]}
|
||||
return data["data"][0]
|
||||
except Exception as e:
|
||||
print(f"⚠️ Errore Embedding: {e}")
|
||||
return {}
|
||||
|
||||
async def ensure_collection(collection_name: str):
|
||||
client = await get_qdrant_client()
|
||||
if not await client.collection_exists(collection_name):
|
||||
async def ensure_collection(name: str):
|
||||
client = AsyncQdrantClient(url=QDRANT_URL)
|
||||
if not await client.collection_exists(name):
|
||||
await client.create_collection(
|
||||
collection_name=collection_name,
|
||||
vectors_config=VectorParams(size=768, distance=Distance.COSINE)
|
||||
collection_name=name,
|
||||
vectors_config={
|
||||
"bge_dense": VectorParams(size=1024, distance=Distance.COSINE)
|
||||
},
|
||||
# ABILITIAMO LO SPARSE VECTOR
|
||||
sparse_vectors_config={
|
||||
"bge_sparse": SparseVectorParams(
|
||||
index=SparseIndexParams(
|
||||
on_disk=False, # True se hai poca RAM, ma hai 32GB quindi False è meglio
|
||||
)
|
||||
)
|
||||
}
|
||||
)
|
||||
|
||||
async def get_embeddings(text: str) -> list:
|
||||
client = ollama.Client(host=OLLAMA_URL)
|
||||
try:
|
||||
response = client.embed(model='nomic-embed-text', input=text[:2000])
|
||||
if 'embeddings' in response: return response['embeddings'][0]
|
||||
return response.get('embedding', [])
|
||||
except: return []
|
||||
def chunk_text_by_lines(text: str, max_chars: int = 2500) -> List[str]:
|
||||
"""Taglia il testo raggruppando linee intere senza spezzarle."""
|
||||
lines = text.split('\n')
|
||||
chunks = []
|
||||
current_chunk = ""
|
||||
|
||||
async def index_document(file_name: str, content: str, collection_name: str) -> bool:
|
||||
try:
|
||||
await ensure_collection(collection_name)
|
||||
embedding = await get_embeddings(content)
|
||||
if not embedding: return False
|
||||
for line in lines:
|
||||
# Se la riga è troppo lunga da sola (caso raro), la tagliamo
|
||||
if len(line) > max_chars:
|
||||
if current_chunk: chunks.append(current_chunk)
|
||||
chunks.append(line[:max_chars])
|
||||
current_chunk = ""
|
||||
continue
|
||||
|
||||
qdrant = await get_qdrant_client()
|
||||
await qdrant.upsert(
|
||||
collection_name=collection_name,
|
||||
points=[PointStruct(
|
||||
# Se aggiungere la riga supera il limite, salviamo il chunk attuale
|
||||
if len(current_chunk) + len(line) > max_chars:
|
||||
chunks.append(current_chunk)
|
||||
current_chunk = line + "\n"
|
||||
else:
|
||||
current_chunk += line + "\n"
|
||||
|
||||
if current_chunk:
|
||||
chunks.append(current_chunk)
|
||||
return chunks
|
||||
|
||||
async def index_document(filename: str, content: str, collection: str) -> bool:
|
||||
try:
|
||||
await ensure_collection(collection)
|
||||
|
||||
# --- MODIFICA QUI: Usiamo il chunking intelligente invece di quello brutale ---
|
||||
# Vecchio: chunks = [content[i:i+3000] for i in range(0, len(content), 3000)]
|
||||
chunks = chunk_text_by_lines(content, max_chars=2000)
|
||||
# ---------------------------------------------------------------------------
|
||||
|
||||
qdrant = AsyncQdrantClient(url=QDRANT_URL)
|
||||
points = []
|
||||
|
||||
for i, chunk in enumerate(chunks):
|
||||
vectors = await get_embeddings(chunk)
|
||||
|
||||
if vectors:
|
||||
points.append(PointStruct(
|
||||
id=str(uuid.uuid4()),
|
||||
vector=embedding,
|
||||
payload={"file_name": file_name, "content": content[:3000], "indexed_at": datetime.now().isoformat()}
|
||||
)]
|
||||
vector={
|
||||
"bge_dense": vectors["dense"],
|
||||
"bge_sparse": models.SparseVector(
|
||||
indices=vectors["sparse"]["indices"],
|
||||
values=vectors["sparse"]["values"]
|
||||
)
|
||||
},
|
||||
payload={"file_name": filename, "content": chunk, "chunk_id": i}
|
||||
))
|
||||
|
||||
if points:
|
||||
await qdrant.upsert(collection_name=collection, points=points)
|
||||
return True
|
||||
except: return False
|
||||
except Exception as e:
|
||||
print(f"Index Error: {e}")
|
||||
return False
|
||||
|
||||
async def search_qdrant(query: str, collection: str) -> str:
|
||||
try:
|
||||
client = await get_qdrant_client()
|
||||
client = AsyncQdrantClient(url=QDRANT_URL)
|
||||
if not await client.collection_exists(collection): return ""
|
||||
emb = await get_embeddings(query)
|
||||
if not emb: return ""
|
||||
res = await client.query_points(collection_name=collection, query=emb, limit=3)
|
||||
return "\n\n".join([hit.payload['content'] for hit in res.points if hit.payload])
|
||||
except: return ""
|
||||
|
||||
# === CHAINLIT HANDLERS ===
|
||||
vectors = await get_embeddings(query)
|
||||
if not vectors: return ""
|
||||
|
||||
# HYBRID QUERY (RRF FUSION)
|
||||
res = await client.query_points(
|
||||
collection_name=collection,
|
||||
prefetch=[
|
||||
models.Prefetch(
|
||||
query=vectors["dense"],
|
||||
using="bge_dense",
|
||||
limit=10,
|
||||
),
|
||||
models.Prefetch(
|
||||
query=models.SparseVector(
|
||||
indices=vectors["sparse"]["indices"],
|
||||
values=vectors["sparse"]["values"]
|
||||
),
|
||||
using="bge_sparse",
|
||||
limit=20,
|
||||
),
|
||||
],
|
||||
# --- CORREZIONE QUI SOTTO (da 'method' a 'fusion') ---
|
||||
query=models.FusionQuery(fusion=models.Fusion.RRF),
|
||||
limit=12
|
||||
)
|
||||
|
||||
return "\n\n".join([f"📄 {hit.payload['file_name']}:\n{hit.payload['content']}" for hit in res.points if hit.payload])
|
||||
except Exception as e:
|
||||
print(f"Search Error: {e}") # Questo è quello che vedevi nei log
|
||||
return ""
|
||||
|
||||
return "\n\n".join([f"📄 {hit.payload['file_name']}:\n{hit.payload['content']}" for hit in res.points if hit.payload])
|
||||
except Exception as e:
|
||||
print(f"Search Error: {e}")
|
||||
return ""
|
||||
|
||||
# === CHAT LOGIC ===
|
||||
@cl.on_chat_start
|
||||
async def on_chat_start():
|
||||
user = cl.user_session.get("user")
|
||||
|
||||
if not user:
|
||||
# Fallback locale se non c'è auth
|
||||
user_email = "guest@local"
|
||||
profile = get_user_profile(user_email)
|
||||
email = "guest@local"
|
||||
profile = get_user_profile(email)
|
||||
else:
|
||||
user_email = user.identifier
|
||||
# I metadati sono già popolati dalla callback oauth
|
||||
profile = USER_PROFILES.get(user_email, get_user_profile("guest"))
|
||||
email = user.identifier
|
||||
profile = USER_PROFILES.get(email, get_user_profile("guest"))
|
||||
|
||||
# Salva in sessione
|
||||
cl.user_session.set("email", user_email)
|
||||
cl.user_session.set("email", email)
|
||||
cl.user_session.set("role", profile["role"])
|
||||
cl.user_session.set("workspace", profile["workspace"])
|
||||
cl.user_session.set("rag_collection", profile["rag_collection"])
|
||||
|
|
@ -254,91 +309,65 @@ async def on_chat_start():
|
|||
|
||||
create_workspace(profile["workspace"])
|
||||
|
||||
# === SETTINGS WIDGETS ===
|
||||
settings_widgets = [
|
||||
cl.input_widget.Select(
|
||||
id="model",
|
||||
label="Modello AI",
|
||||
values=["glm-4.6:cloud", "llama3.2", "mistral", "qwen2.5-coder:32b"],
|
||||
initial_value="glm-4.6:cloud",
|
||||
),
|
||||
cl.input_widget.Slider(
|
||||
id="temperature",
|
||||
label="Temperatura",
|
||||
initial=0.7, min=0, max=2, step=0.1,
|
||||
),
|
||||
settings = [
|
||||
cl.input_widget.Select(id="model", label="Modello", values=["glm-4.6:cloud", "llama3"], initial_value="glm-4.6:cloud"),
|
||||
cl.input_widget.Slider(id="temp", label="Temperatura", initial=0.5, min=0, max=1, step=0.1)
|
||||
]
|
||||
if profile["role"] == "admin":
|
||||
settings_widgets.append(cl.input_widget.Switch(id="rag_enabled", label="Abilita RAG", initial=True))
|
||||
settings.append(cl.input_widget.Switch(id="rag", label="RAG Attivo", initial=True))
|
||||
|
||||
await cl.ChatSettings(settings_widgets).send()
|
||||
|
||||
await cl.Message(
|
||||
content=f"👋 Ciao **{profile['name']}**!\n"
|
||||
f"Ruolo: `{profile['role']}` | Workspace: `{profile['workspace']}`\n"
|
||||
).send()
|
||||
await cl.ChatSettings(settings).send()
|
||||
await cl.Message(content=f"👋 Ciao **{profile['name']}**! Pronto per l'automazione.").send()
|
||||
|
||||
@cl.on_settings_update
|
||||
async def on_settings_update(settings):
|
||||
cl.user_session.set("settings", settings)
|
||||
await cl.Message(content="✅ Impostazioni aggiornate").send()
|
||||
async def on_settings_update(s): cl.user_session.set("settings", s)
|
||||
|
||||
@cl.on_message
|
||||
async def on_message(message: cl.Message):
|
||||
workspace = cl.user_session.get("workspace")
|
||||
rag_collection = cl.user_session.get("rag_collection")
|
||||
user_role = cl.user_session.get("role")
|
||||
show_code = cl.user_session.get("show_code")
|
||||
|
||||
role = cl.user_session.get("role")
|
||||
settings = cl.user_session.get("settings", {})
|
||||
model = settings.get("model", "glm-4.6:cloud")
|
||||
temperature = settings.get("temperature", 0.7)
|
||||
rag_enabled = settings.get("rag_enabled", True) if user_role == "admin" else True
|
||||
|
||||
# 1. GESTIONE FILE
|
||||
# 1. FILE UPLOAD (PDF & EXCEL)
|
||||
if message.elements:
|
||||
for element in message.elements:
|
||||
dest = os.path.join(WORKSPACES_DIR, workspace, element.name)
|
||||
shutil.copy(element.path, dest)
|
||||
if element.name.endswith(".pdf"):
|
||||
text = extract_text_from_pdf(dest)
|
||||
if text:
|
||||
await index_document(element.name, text, rag_collection)
|
||||
await cl.Message(content=f"✅ **{element.name}** indicizzato.").send()
|
||||
for el in message.elements:
|
||||
dest = os.path.join(WORKSPACES_DIR, workspace, el.name)
|
||||
shutil.copy(el.path, dest)
|
||||
|
||||
# 2. RAG
|
||||
context = ""
|
||||
if rag_enabled:
|
||||
context = await search_qdrant(message.content, rag_collection)
|
||||
content = ""
|
||||
if el.name.endswith(".pdf"):
|
||||
content = extract_text_from_pdf(dest)
|
||||
elif el.name.endswith((".xlsx", ".xls")):
|
||||
await cl.Message(content=f"📊 Analisi Excel **{el.name}**...").send()
|
||||
content = extract_text_from_excel(dest)
|
||||
|
||||
system_prompt = "Sei un assistente esperto."
|
||||
if context: system_prompt += f"\n\nCONTESTO:\n{context}"
|
||||
if content:
|
||||
ok = await index_document(el.name, content, rag_collection)
|
||||
icon = "✅" if ok else "❌"
|
||||
await cl.Message(content=f"{icon} **{el.name}** elaborato.").send()
|
||||
|
||||
# 2. RAG & GENERATION
|
||||
rag_active = settings.get("rag", True) if role == "admin" else True
|
||||
context = await search_qdrant(message.content, rag_collection) if rag_active else ""
|
||||
|
||||
prompt = "Sei un esperto di automazione industriale."
|
||||
if context: prompt += f"\n\nUSA QUESTO CONTESTO (Manuali/Excel):\n{context}"
|
||||
|
||||
# 3. GENERAZIONE
|
||||
client = ollama.AsyncClient(host=OLLAMA_URL)
|
||||
msg = cl.Message(content="")
|
||||
await msg.send()
|
||||
|
||||
try:
|
||||
client = ollama.AsyncClient(host=OLLAMA_URL)
|
||||
stream = await client.chat(
|
||||
model=model,
|
||||
messages=[{"role": "system", "content": system_prompt}, {"role": "user", "content": message.content}],
|
||||
options={"temperature": temperature},
|
||||
model=settings.get("model", "glm-4.6:cloud"),
|
||||
messages=[{"role": "system", "content": prompt}, {"role": "user", "content": message.content}],
|
||||
options={"temperature": settings.get("temp", 0.5)},
|
||||
stream=True
|
||||
)
|
||||
|
||||
full_resp = ""
|
||||
async for chunk in stream:
|
||||
token = chunk['message']['content']
|
||||
full_resp += token
|
||||
await msg.stream_token(token)
|
||||
await msg.update()
|
||||
await msg.stream_token(chunk['message']['content'])
|
||||
except Exception as e:
|
||||
await msg.stream_token(f"Errore connessione AI: {e}")
|
||||
|
||||
# 4. SALVATAGGIO CODICE
|
||||
if show_code:
|
||||
blocks = re.findall(r"``````", full_resp, re.DOTALL)
|
||||
elements = []
|
||||
for code in blocks:
|
||||
path = save_code_to_file(code.strip(), workspace)
|
||||
elements.append(cl.File(name=os.path.basename(path), path=path, display="inline"))
|
||||
if elements:
|
||||
await cl.Message(content="💾 Codice salvato", elements=elements).send()
|
||||
await msg.update()
|
||||
|
|
@ -27,3 +27,7 @@ sniffio
|
|||
aiohttp
|
||||
boto3>=1.28.0
|
||||
azure-storage-file-datalake>=12.14.0
|
||||
# NUOVI PER EXCEL
|
||||
pandas
|
||||
openpyxl
|
||||
tabulate
|
||||
|
|
|
|||
Loading…
Reference in New Issue