Compare commits
2 Commits
main
...
feature/ra
| Author | SHA1 | Date |
|---|---|---|
|
|
bffd9aa249 | |
|
|
9cef64f9ea |
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
|
@ -3,6 +3,4 @@ __pycache__/
|
||||||
*.pyc
|
*.pyc
|
||||||
.aider*
|
.aider*
|
||||||
workspaces/*
|
workspaces/*
|
||||||
qdrant_storage/.files/
|
qdrant_storage/
|
||||||
__pycache__/
|
|
||||||
.env
|
|
||||||
413
app.py
413
app.py
|
|
@ -2,17 +2,19 @@ import os
|
||||||
import re
|
import re
|
||||||
import uuid
|
import uuid
|
||||||
import shutil
|
import shutil
|
||||||
|
import pandas as pd # NUOVO: Gestione Excel
|
||||||
|
import httpx # NUOVO: Chiamate API Remote
|
||||||
from datetime import datetime
|
from datetime import datetime
|
||||||
from typing import Optional, Dict, List
|
from typing import Optional, Dict, List
|
||||||
import chainlit as cl
|
import chainlit as cl
|
||||||
import ollama
|
import ollama
|
||||||
import fitz # PyMuPDF
|
import fitz # PyMuPDF
|
||||||
from qdrant_client import AsyncQdrantClient
|
from qdrant_client import AsyncQdrantClient
|
||||||
from qdrant_client.models import PointStruct, Distance, VectorParams
|
from qdrant_client import models
|
||||||
|
from qdrant_client.models import PointStruct, Distance, VectorParams, SparseVectorParams, SparseIndexParams
|
||||||
from chainlit.data.sql_alchemy import SQLAlchemyDataLayer
|
from chainlit.data.sql_alchemy import SQLAlchemyDataLayer
|
||||||
|
|
||||||
# === FIX IMPORT ROBUSTO ===
|
# === FIX IMPORT ===
|
||||||
# Gestisce le differenze tra le versioni di Chainlit 2.x
|
|
||||||
try:
|
try:
|
||||||
from chainlit.data.storage_clients import BaseStorageClient
|
from chainlit.data.storage_clients import BaseStorageClient
|
||||||
except ImportError:
|
except ImportError:
|
||||||
|
|
@ -23,8 +25,11 @@ except ImportError:
|
||||||
|
|
||||||
# === CONFIGURAZIONE ===
|
# === CONFIGURAZIONE ===
|
||||||
DATABASE_URL = os.getenv("DATABASE_URL", "postgresql+asyncpg://ai_user:secure_password_here@postgres:5432/ai_station")
|
DATABASE_URL = os.getenv("DATABASE_URL", "postgresql+asyncpg://ai_user:secure_password_here@postgres:5432/ai_station")
|
||||||
|
# PUNTANO AL SERVER .243 (Il "Cervello")
|
||||||
OLLAMA_URL = os.getenv("OLLAMA_URL", "http://192.168.1.243:11434")
|
OLLAMA_URL = os.getenv("OLLAMA_URL", "http://192.168.1.243:11434")
|
||||||
|
BGE_API_URL = os.getenv("BGE_API_URL", "http://192.168.1.243:8001")
|
||||||
QDRANT_URL = os.getenv("QDRANT_URL", "http://qdrant:6333")
|
QDRANT_URL = os.getenv("QDRANT_URL", "http://qdrant:6333")
|
||||||
|
|
||||||
WORKSPACES_DIR = "./workspaces"
|
WORKSPACES_DIR = "./workspaces"
|
||||||
STORAGE_DIR = "./.files"
|
STORAGE_DIR = "./.files"
|
||||||
|
|
||||||
|
|
@ -75,178 +80,228 @@ USER_PROFILES = {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
# === CUSTOM LOCAL STORAGE CLIENT (FIXED) ===# Questa classe ora implementa tutti i metodi astratti richiesti da Chainlit 2.8.3
|
# === STORAGE CLIENT ===
|
||||||
class LocalStorageClient(BaseStorageClient):
|
class LocalStorageClient(BaseStorageClient):
|
||||||
"""Storage locale su filesystem per file/elementi"""
|
|
||||||
|
|
||||||
def __init__(self, storage_path: str):
|
def __init__(self, storage_path: str):
|
||||||
self.storage_path = storage_path
|
self.storage_path = storage_path
|
||||||
os.makedirs(storage_path, exist_ok=True)
|
os.makedirs(storage_path, exist_ok=True)
|
||||||
|
|
||||||
async def upload_file(
|
async def upload_file(self, object_key: str, data: bytes, mime: str = "application/octet-stream", overwrite: bool = True) -> Dict[str, str]:
|
||||||
self,
|
|
||||||
object_key: str,
|
|
||||||
data: bytes,
|
|
||||||
mime: str = "application/octet-stream",
|
|
||||||
overwrite: bool = True,
|
|
||||||
) -> Dict[str, str]:
|
|
||||||
file_path = os.path.join(self.storage_path, object_key)
|
file_path = os.path.join(self.storage_path, object_key)
|
||||||
os.makedirs(os.path.dirname(file_path), exist_ok=True)
|
os.makedirs(os.path.dirname(file_path), exist_ok=True)
|
||||||
with open(file_path, "wb") as f:
|
with open(file_path, "wb") as f: f.write(data)
|
||||||
f.write(data)
|
|
||||||
return {"object_key": object_key, "url": f"/files/{object_key}"}
|
return {"object_key": object_key, "url": f"/files/{object_key}"}
|
||||||
|
|
||||||
# Implementazione metodi obbligatori mancanti nella versione precedente
|
async def get_read_url(self, object_key: str) -> str: return f"/files/{object_key}"
|
||||||
async def get_read_url(self, object_key: str) -> str:
|
|
||||||
return f"/files/{object_key}"
|
|
||||||
|
|
||||||
async def delete_file(self, object_key: str) -> bool:
|
async def delete_file(self, object_key: str) -> bool:
|
||||||
file_path = os.path.join(self.storage_path, object_key)
|
path = os.path.join(self.storage_path, object_key)
|
||||||
if os.path.exists(file_path):
|
if os.path.exists(path): os.remove(path); return True
|
||||||
os.remove(file_path)
|
|
||||||
return True
|
|
||||||
return False
|
return False
|
||||||
|
async def close(self): pass
|
||||||
|
|
||||||
async def close(self):
|
|
||||||
pass
|
|
||||||
|
|
||||||
# === DATA LAYER ===
|
|
||||||
@cl.data_layer
|
@cl.data_layer
|
||||||
def get_data_layer():
|
def get_data_layer():
|
||||||
return SQLAlchemyDataLayer(
|
return SQLAlchemyDataLayer(conninfo=DATABASE_URL, user_thread_limit=1000, storage_provider=LocalStorageClient(STORAGE_DIR))
|
||||||
conninfo=DATABASE_URL,
|
|
||||||
user_thread_limit=1000,
|
|
||||||
storage_provider=LocalStorageClient(storage_path=STORAGE_DIR)
|
|
||||||
)
|
|
||||||
|
|
||||||
# === OAUTH CALLBACK ===
|
# === OAUTH ===
|
||||||
@cl.oauth_callback
|
@cl.oauth_callback
|
||||||
def oauth_callback(
|
def oauth_callback(provider_id: str, token: str, raw_user_data: Dict[str, str], default_user: cl.User) -> Optional[cl.User]:
|
||||||
provider_id: str,
|
|
||||||
token: str,
|
|
||||||
raw_user_data: Dict[str, str],
|
|
||||||
default_user: cl.User,
|
|
||||||
) -> Optional[cl.User]:
|
|
||||||
if provider_id == "google":
|
if provider_id == "google":
|
||||||
email = raw_user_data.get("email", "").lower()
|
email = raw_user_data.get("email", "").lower()
|
||||||
|
|
||||||
# Verifica se utente è autorizzato (opzionale: blocca se non in lista)
|
|
||||||
# if email not in USER_PROFILES:
|
|
||||||
# return None
|
|
||||||
|
|
||||||
# Recupera profilo o usa default Guest
|
|
||||||
profile = USER_PROFILES.get(email, get_user_profile("guest"))
|
profile = USER_PROFILES.get(email, get_user_profile("guest"))
|
||||||
|
|
||||||
default_user.metadata.update({
|
default_user.metadata.update({
|
||||||
"picture": raw_user_data.get("picture", ""),
|
"picture": raw_user_data.get("picture", ""),
|
||||||
"role": profile["role"],
|
"role": profile["role"], "workspace": profile["workspace"],
|
||||||
"workspace": profile["workspace"],
|
"rag_collection": profile["rag_collection"], "capabilities": profile["capabilities"],
|
||||||
"rag_collection": profile["rag_collection"],
|
"show_code": profile["show_code"], "display_name": profile["name"]
|
||||||
"capabilities": profile["capabilities"],
|
|
||||||
"show_code": profile["show_code"],
|
|
||||||
"display_name": profile["name"]
|
|
||||||
})
|
})
|
||||||
return default_user
|
return default_user
|
||||||
return default_user
|
return default_user
|
||||||
|
|
||||||
# === UTILITY FUNCTIONS ===
|
def get_user_profile(email: str) -> Dict:
|
||||||
def get_user_profile(user_email: str) -> Dict:
|
return USER_PROFILES.get(email.lower(), {"role": "guest", "name": "Ospite", "workspace": "guest_workspace", "rag_collection": "documents", "show_code": False})
|
||||||
return USER_PROFILES.get(user_email.lower(), {
|
|
||||||
"role": "guest",
|
|
||||||
"name": "Ospite",
|
|
||||||
"workspace": "guest_workspace",
|
|
||||||
"rag_collection": "documents",
|
|
||||||
"capabilities": [],
|
|
||||||
"show_code": False
|
|
||||||
})
|
|
||||||
|
|
||||||
def create_workspace(workspace_name: str) -> str:
|
def create_workspace(name: str) -> str:
|
||||||
path = os.path.join(WORKSPACES_DIR, workspace_name)
|
path = os.path.join(WORKSPACES_DIR, name)
|
||||||
os.makedirs(path, exist_ok=True)
|
os.makedirs(path, exist_ok=True)
|
||||||
return path
|
return path
|
||||||
|
|
||||||
def save_code_to_file(code: str, workspace: str) -> str:
|
def save_code_to_file(code: str, workspace: str) -> str:
|
||||||
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
ts = datetime.now().strftime("%Y%m%d_%H%M%S")
|
||||||
file_name = f"code_{timestamp}.py"
|
path = os.path.join(WORKSPACES_DIR, workspace, f"code_{ts}.py")
|
||||||
file_path = os.path.join(WORKSPACES_DIR, workspace, file_name)
|
with open(path, "w", encoding="utf-8") as f: f.write(code)
|
||||||
with open(file_path, "w", encoding="utf-8") as f:
|
return path
|
||||||
f.write(code)
|
|
||||||
return file_path
|
|
||||||
|
|
||||||
def extract_text_from_pdf(pdf_path: str) -> str:
|
# === PARSING DOCUMENTI ===
|
||||||
|
def extract_text_from_pdf(path: str) -> str:
|
||||||
try:
|
try:
|
||||||
doc = fitz.open(pdf_path)
|
doc = fitz.open(path)
|
||||||
text = "\n".join([page.get_text() for page in doc])
|
return "\n".join([page.get_text() for page in doc])
|
||||||
doc.close()
|
except: return ""
|
||||||
return text
|
|
||||||
except Exception:
|
def extract_text_from_excel(path: str) -> str:
|
||||||
|
"""Estrae testo da Excel convertendo i fogli in Markdown"""
|
||||||
|
try:
|
||||||
|
xl = pd.read_excel(path, sheet_name=None)
|
||||||
|
text_content = []
|
||||||
|
for sheet, df in xl.items():
|
||||||
|
text_content.append(f"\n--- Foglio Excel: {sheet} ---\n")
|
||||||
|
# Pulisce NaN e converte in stringa
|
||||||
|
clean_df = df.fillna("").astype(str)
|
||||||
|
text_content.append(clean_df.to_markdown(index=False))
|
||||||
|
return "\n".join(text_content)
|
||||||
|
except Exception as e:
|
||||||
|
print(f"❌ Errore Excel: {e}")
|
||||||
return ""
|
return ""
|
||||||
|
|
||||||
# === QDRANT FUNCTIONS ===
|
# === AI & EMBEDDINGS (Remoto) ===
|
||||||
async def get_qdrant_client() -> AsyncQdrantClient:
|
async def get_embeddings(text: str) -> dict:
|
||||||
return AsyncQdrantClient(url=QDRANT_URL)
|
"""Ritorna dict con keys 'dense' e 'sparse'"""
|
||||||
|
try:
|
||||||
|
async with httpx.AsyncClient(timeout=30.0) as client:
|
||||||
|
resp = await client.post(
|
||||||
|
f"{BGE_API_URL}/embed",
|
||||||
|
json={"texts": [text]}
|
||||||
|
)
|
||||||
|
if resp.status_code == 200:
|
||||||
|
data = resp.json()
|
||||||
|
# La nuova API ritorna {"data": [{"dense":..., "sparse":...}]}
|
||||||
|
return data["data"][0]
|
||||||
|
except Exception as e:
|
||||||
|
print(f"⚠️ Errore Embedding: {e}")
|
||||||
|
return {}
|
||||||
|
|
||||||
async def ensure_collection(collection_name: str):
|
async def ensure_collection(name: str):
|
||||||
client = await get_qdrant_client()
|
client = AsyncQdrantClient(url=QDRANT_URL)
|
||||||
if not await client.collection_exists(collection_name):
|
if not await client.collection_exists(name):
|
||||||
await client.create_collection(
|
await client.create_collection(
|
||||||
collection_name=collection_name,
|
collection_name=name,
|
||||||
vectors_config=VectorParams(size=768, distance=Distance.COSINE)
|
vectors_config={
|
||||||
|
"bge_dense": VectorParams(size=1024, distance=Distance.COSINE)
|
||||||
|
},
|
||||||
|
# ABILITIAMO LO SPARSE VECTOR
|
||||||
|
sparse_vectors_config={
|
||||||
|
"bge_sparse": SparseVectorParams(
|
||||||
|
index=SparseIndexParams(
|
||||||
|
on_disk=False, # True se hai poca RAM, ma hai 32GB quindi False è meglio
|
||||||
|
)
|
||||||
|
)
|
||||||
|
}
|
||||||
)
|
)
|
||||||
|
|
||||||
async def get_embeddings(text: str) -> list:
|
def chunk_text_by_lines(text: str, max_chars: int = 2500) -> List[str]:
|
||||||
client = ollama.Client(host=OLLAMA_URL)
|
"""Taglia il testo raggruppando linee intere senza spezzarle."""
|
||||||
try:
|
lines = text.split('\n')
|
||||||
response = client.embed(model='nomic-embed-text', input=text[:2000])
|
chunks = []
|
||||||
if 'embeddings' in response: return response['embeddings'][0]
|
current_chunk = ""
|
||||||
return response.get('embedding', [])
|
|
||||||
except: return []
|
for line in lines:
|
||||||
|
# Se la riga è troppo lunga da sola (caso raro), la tagliamo
|
||||||
|
if len(line) > max_chars:
|
||||||
|
if current_chunk: chunks.append(current_chunk)
|
||||||
|
chunks.append(line[:max_chars])
|
||||||
|
current_chunk = ""
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Se aggiungere la riga supera il limite, salviamo il chunk attuale
|
||||||
|
if len(current_chunk) + len(line) > max_chars:
|
||||||
|
chunks.append(current_chunk)
|
||||||
|
current_chunk = line + "\n"
|
||||||
|
else:
|
||||||
|
current_chunk += line + "\n"
|
||||||
|
|
||||||
|
if current_chunk:
|
||||||
|
chunks.append(current_chunk)
|
||||||
|
return chunks
|
||||||
|
|
||||||
async def index_document(file_name: str, content: str, collection_name: str) -> bool:
|
async def index_document(filename: str, content: str, collection: str) -> bool:
|
||||||
try:
|
try:
|
||||||
await ensure_collection(collection_name)
|
await ensure_collection(collection)
|
||||||
embedding = await get_embeddings(content)
|
|
||||||
if not embedding: return False
|
|
||||||
|
|
||||||
qdrant = await get_qdrant_client()
|
# --- MODIFICA QUI: Usiamo il chunking intelligente invece di quello brutale ---
|
||||||
await qdrant.upsert(
|
# Vecchio: chunks = [content[i:i+3000] for i in range(0, len(content), 3000)]
|
||||||
collection_name=collection_name,
|
chunks = chunk_text_by_lines(content, max_chars=2000)
|
||||||
points=[PointStruct(
|
# ---------------------------------------------------------------------------
|
||||||
id=str(uuid.uuid4()),
|
|
||||||
vector=embedding,
|
qdrant = AsyncQdrantClient(url=QDRANT_URL)
|
||||||
payload={"file_name": file_name, "content": content[:3000], "indexed_at": datetime.now().isoformat()}
|
points = []
|
||||||
)]
|
|
||||||
)
|
for i, chunk in enumerate(chunks):
|
||||||
return True
|
vectors = await get_embeddings(chunk)
|
||||||
except: return False
|
|
||||||
|
if vectors:
|
||||||
|
points.append(PointStruct(
|
||||||
|
id=str(uuid.uuid4()),
|
||||||
|
vector={
|
||||||
|
"bge_dense": vectors["dense"],
|
||||||
|
"bge_sparse": models.SparseVector(
|
||||||
|
indices=vectors["sparse"]["indices"],
|
||||||
|
values=vectors["sparse"]["values"]
|
||||||
|
)
|
||||||
|
},
|
||||||
|
payload={"file_name": filename, "content": chunk, "chunk_id": i}
|
||||||
|
))
|
||||||
|
|
||||||
|
if points:
|
||||||
|
await qdrant.upsert(collection_name=collection, points=points)
|
||||||
|
return True
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Index Error: {e}")
|
||||||
|
return False
|
||||||
|
|
||||||
async def search_qdrant(query: str, collection: str) -> str:
|
async def search_qdrant(query: str, collection: str) -> str:
|
||||||
try:
|
try:
|
||||||
client = await get_qdrant_client()
|
client = AsyncQdrantClient(url=QDRANT_URL)
|
||||||
if not await client.collection_exists(collection): return ""
|
if not await client.collection_exists(collection): return ""
|
||||||
emb = await get_embeddings(query)
|
|
||||||
if not emb: return ""
|
vectors = await get_embeddings(query)
|
||||||
res = await client.query_points(collection_name=collection, query=emb, limit=3)
|
if not vectors: return ""
|
||||||
return "\n\n".join([hit.payload['content'] for hit in res.points if hit.payload])
|
|
||||||
except: return ""
|
# HYBRID QUERY (RRF FUSION)
|
||||||
|
res = await client.query_points(
|
||||||
# === CHAINLIT HANDLERS ===
|
collection_name=collection,
|
||||||
|
prefetch=[
|
||||||
|
models.Prefetch(
|
||||||
|
query=vectors["dense"],
|
||||||
|
using="bge_dense",
|
||||||
|
limit=10,
|
||||||
|
),
|
||||||
|
models.Prefetch(
|
||||||
|
query=models.SparseVector(
|
||||||
|
indices=vectors["sparse"]["indices"],
|
||||||
|
values=vectors["sparse"]["values"]
|
||||||
|
),
|
||||||
|
using="bge_sparse",
|
||||||
|
limit=20,
|
||||||
|
),
|
||||||
|
],
|
||||||
|
# --- CORREZIONE QUI SOTTO (da 'method' a 'fusion') ---
|
||||||
|
query=models.FusionQuery(fusion=models.Fusion.RRF),
|
||||||
|
limit=12
|
||||||
|
)
|
||||||
|
|
||||||
|
return "\n\n".join([f"📄 {hit.payload['file_name']}:\n{hit.payload['content']}" for hit in res.points if hit.payload])
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Search Error: {e}") # Questo è quello che vedevi nei log
|
||||||
|
return ""
|
||||||
|
|
||||||
|
return "\n\n".join([f"📄 {hit.payload['file_name']}:\n{hit.payload['content']}" for hit in res.points if hit.payload])
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Search Error: {e}")
|
||||||
|
return ""
|
||||||
|
|
||||||
|
# === CHAT LOGIC ===
|
||||||
@cl.on_chat_start
|
@cl.on_chat_start
|
||||||
async def on_chat_start():
|
async def on_chat_start():
|
||||||
user = cl.user_session.get("user")
|
user = cl.user_session.get("user")
|
||||||
|
|
||||||
if not user:
|
if not user:
|
||||||
# Fallback locale se non c'è auth
|
email = "guest@local"
|
||||||
user_email = "guest@local"
|
profile = get_user_profile(email)
|
||||||
profile = get_user_profile(user_email)
|
|
||||||
else:
|
else:
|
||||||
user_email = user.identifier
|
email = user.identifier
|
||||||
# I metadati sono già popolati dalla callback oauth
|
profile = USER_PROFILES.get(email, get_user_profile("guest"))
|
||||||
profile = USER_PROFILES.get(user_email, get_user_profile("guest"))
|
|
||||||
|
|
||||||
# Salva in sessione
|
cl.user_session.set("email", email)
|
||||||
cl.user_session.set("email", user_email)
|
|
||||||
cl.user_session.set("role", profile["role"])
|
cl.user_session.set("role", profile["role"])
|
||||||
cl.user_session.set("workspace", profile["workspace"])
|
cl.user_session.set("workspace", profile["workspace"])
|
||||||
cl.user_session.set("rag_collection", profile["rag_collection"])
|
cl.user_session.set("rag_collection", profile["rag_collection"])
|
||||||
|
|
@ -254,91 +309,65 @@ async def on_chat_start():
|
||||||
|
|
||||||
create_workspace(profile["workspace"])
|
create_workspace(profile["workspace"])
|
||||||
|
|
||||||
# === SETTINGS WIDGETS ===
|
settings = [
|
||||||
settings_widgets = [
|
cl.input_widget.Select(id="model", label="Modello", values=["glm-4.6:cloud", "llama3"], initial_value="glm-4.6:cloud"),
|
||||||
cl.input_widget.Select(
|
cl.input_widget.Slider(id="temp", label="Temperatura", initial=0.5, min=0, max=1, step=0.1)
|
||||||
id="model",
|
|
||||||
label="Modello AI",
|
|
||||||
values=["glm-4.6:cloud", "llama3.2", "mistral", "qwen2.5-coder:32b"],
|
|
||||||
initial_value="glm-4.6:cloud",
|
|
||||||
),
|
|
||||||
cl.input_widget.Slider(
|
|
||||||
id="temperature",
|
|
||||||
label="Temperatura",
|
|
||||||
initial=0.7, min=0, max=2, step=0.1,
|
|
||||||
),
|
|
||||||
]
|
]
|
||||||
if profile["role"] == "admin":
|
if profile["role"] == "admin":
|
||||||
settings_widgets.append(cl.input_widget.Switch(id="rag_enabled", label="Abilita RAG", initial=True))
|
settings.append(cl.input_widget.Switch(id="rag", label="RAG Attivo", initial=True))
|
||||||
|
|
||||||
await cl.ChatSettings(settings_widgets).send()
|
await cl.ChatSettings(settings).send()
|
||||||
|
await cl.Message(content=f"👋 Ciao **{profile['name']}**! Pronto per l'automazione.").send()
|
||||||
await cl.Message(
|
|
||||||
content=f"👋 Ciao **{profile['name']}**!\n"
|
|
||||||
f"Ruolo: `{profile['role']}` | Workspace: `{profile['workspace']}`\n"
|
|
||||||
).send()
|
|
||||||
|
|
||||||
@cl.on_settings_update
|
@cl.on_settings_update
|
||||||
async def on_settings_update(settings):
|
async def on_settings_update(s): cl.user_session.set("settings", s)
|
||||||
cl.user_session.set("settings", settings)
|
|
||||||
await cl.Message(content="✅ Impostazioni aggiornate").send()
|
|
||||||
|
|
||||||
@cl.on_message
|
@cl.on_message
|
||||||
async def on_message(message: cl.Message):
|
async def on_message(message: cl.Message):
|
||||||
workspace = cl.user_session.get("workspace")
|
workspace = cl.user_session.get("workspace")
|
||||||
rag_collection = cl.user_session.get("rag_collection")
|
rag_collection = cl.user_session.get("rag_collection")
|
||||||
user_role = cl.user_session.get("role")
|
role = cl.user_session.get("role")
|
||||||
show_code = cl.user_session.get("show_code")
|
|
||||||
|
|
||||||
settings = cl.user_session.get("settings", {})
|
settings = cl.user_session.get("settings", {})
|
||||||
model = settings.get("model", "glm-4.6:cloud")
|
|
||||||
temperature = settings.get("temperature", 0.7)
|
# 1. FILE UPLOAD (PDF & EXCEL)
|
||||||
rag_enabled = settings.get("rag_enabled", True) if user_role == "admin" else True
|
|
||||||
|
|
||||||
# 1. GESTIONE FILE
|
|
||||||
if message.elements:
|
if message.elements:
|
||||||
for element in message.elements:
|
for el in message.elements:
|
||||||
dest = os.path.join(WORKSPACES_DIR, workspace, element.name)
|
dest = os.path.join(WORKSPACES_DIR, workspace, el.name)
|
||||||
shutil.copy(element.path, dest)
|
shutil.copy(el.path, dest)
|
||||||
if element.name.endswith(".pdf"):
|
|
||||||
text = extract_text_from_pdf(dest)
|
content = ""
|
||||||
if text:
|
if el.name.endswith(".pdf"):
|
||||||
await index_document(element.name, text, rag_collection)
|
content = extract_text_from_pdf(dest)
|
||||||
await cl.Message(content=f"✅ **{element.name}** indicizzato.").send()
|
elif el.name.endswith((".xlsx", ".xls")):
|
||||||
|
await cl.Message(content=f"📊 Analisi Excel **{el.name}**...").send()
|
||||||
|
content = extract_text_from_excel(dest)
|
||||||
|
|
||||||
|
if content:
|
||||||
|
ok = await index_document(el.name, content, rag_collection)
|
||||||
|
icon = "✅" if ok else "❌"
|
||||||
|
await cl.Message(content=f"{icon} **{el.name}** elaborato.").send()
|
||||||
|
|
||||||
# 2. RAG
|
# 2. RAG & GENERATION
|
||||||
context = ""
|
rag_active = settings.get("rag", True) if role == "admin" else True
|
||||||
if rag_enabled:
|
context = await search_qdrant(message.content, rag_collection) if rag_active else ""
|
||||||
context = await search_qdrant(message.content, rag_collection)
|
|
||||||
|
|
||||||
system_prompt = "Sei un assistente esperto."
|
prompt = "Sei un esperto di automazione industriale."
|
||||||
if context: system_prompt += f"\n\nCONTESTO:\n{context}"
|
if context: prompt += f"\n\nUSA QUESTO CONTESTO (Manuali/Excel):\n{context}"
|
||||||
|
|
||||||
# 3. GENERAZIONE
|
|
||||||
client = ollama.AsyncClient(host=OLLAMA_URL)
|
|
||||||
msg = cl.Message(content="")
|
msg = cl.Message(content="")
|
||||||
await msg.send()
|
await msg.send()
|
||||||
|
|
||||||
stream = await client.chat(
|
try:
|
||||||
model=model,
|
client = ollama.AsyncClient(host=OLLAMA_URL)
|
||||||
messages=[{"role": "system", "content": system_prompt}, {"role": "user", "content": message.content}],
|
stream = await client.chat(
|
||||||
options={"temperature": temperature},
|
model=settings.get("model", "glm-4.6:cloud"),
|
||||||
stream=True
|
messages=[{"role": "system", "content": prompt}, {"role": "user", "content": message.content}],
|
||||||
)
|
options={"temperature": settings.get("temp", 0.5)},
|
||||||
|
stream=True
|
||||||
|
)
|
||||||
|
async for chunk in stream:
|
||||||
|
await msg.stream_token(chunk['message']['content'])
|
||||||
|
except Exception as e:
|
||||||
|
await msg.stream_token(f"Errore connessione AI: {e}")
|
||||||
|
|
||||||
full_resp = ""
|
await msg.update()
|
||||||
async for chunk in stream:
|
|
||||||
token = chunk['message']['content']
|
|
||||||
full_resp += token
|
|
||||||
await msg.stream_token(token)
|
|
||||||
await msg.update()
|
|
||||||
|
|
||||||
# 4. SALVATAGGIO CODICE
|
|
||||||
if show_code:
|
|
||||||
blocks = re.findall(r"``````", full_resp, re.DOTALL)
|
|
||||||
elements = []
|
|
||||||
for code in blocks:
|
|
||||||
path = save_code_to_file(code.strip(), workspace)
|
|
||||||
elements.append(cl.File(name=os.path.basename(path), path=path, display="inline"))
|
|
||||||
if elements:
|
|
||||||
await cl.Message(content="💾 Codice salvato", elements=elements).send()
|
|
||||||
|
|
@ -26,4 +26,8 @@ aiofiles>=23.0.0
|
||||||
sniffio
|
sniffio
|
||||||
aiohttp
|
aiohttp
|
||||||
boto3>=1.28.0
|
boto3>=1.28.0
|
||||||
azure-storage-file-datalake>=12.14.0
|
azure-storage-file-datalake>=12.14.0
|
||||||
|
# NUOVI PER EXCEL
|
||||||
|
pandas
|
||||||
|
openpyxl
|
||||||
|
tabulate
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue