Compare commits
2 Commits
main
...
feature/ra
| Author | SHA1 | Date |
|---|---|---|
|
|
bffd9aa249 | |
|
|
9cef64f9ea |
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
|
@ -3,6 +3,4 @@ __pycache__/
|
|||
*.pyc
|
||||
.aider*
|
||||
workspaces/*
|
||||
qdrant_storage/.files/
|
||||
__pycache__/
|
||||
.env
|
||||
qdrant_storage/
|
||||
397
app.py
397
app.py
|
|
@ -2,17 +2,19 @@ import os
|
|||
import re
|
||||
import uuid
|
||||
import shutil
|
||||
import pandas as pd # NUOVO: Gestione Excel
|
||||
import httpx # NUOVO: Chiamate API Remote
|
||||
from datetime import datetime
|
||||
from typing import Optional, Dict, List
|
||||
import chainlit as cl
|
||||
import ollama
|
||||
import fitz # PyMuPDF
|
||||
from qdrant_client import AsyncQdrantClient
|
||||
from qdrant_client.models import PointStruct, Distance, VectorParams
|
||||
from qdrant_client import models
|
||||
from qdrant_client.models import PointStruct, Distance, VectorParams, SparseVectorParams, SparseIndexParams
|
||||
from chainlit.data.sql_alchemy import SQLAlchemyDataLayer
|
||||
|
||||
# === FIX IMPORT ROBUSTO ===
|
||||
# Gestisce le differenze tra le versioni di Chainlit 2.x
|
||||
# === FIX IMPORT ===
|
||||
try:
|
||||
from chainlit.data.storage_clients import BaseStorageClient
|
||||
except ImportError:
|
||||
|
|
@ -23,8 +25,11 @@ except ImportError:
|
|||
|
||||
# === CONFIGURAZIONE ===
|
||||
DATABASE_URL = os.getenv("DATABASE_URL", "postgresql+asyncpg://ai_user:secure_password_here@postgres:5432/ai_station")
|
||||
# PUNTANO AL SERVER .243 (Il "Cervello")
|
||||
OLLAMA_URL = os.getenv("OLLAMA_URL", "http://192.168.1.243:11434")
|
||||
BGE_API_URL = os.getenv("BGE_API_URL", "http://192.168.1.243:8001")
|
||||
QDRANT_URL = os.getenv("QDRANT_URL", "http://qdrant:6333")
|
||||
|
||||
WORKSPACES_DIR = "./workspaces"
|
||||
STORAGE_DIR = "./.files"
|
||||
|
||||
|
|
@ -75,178 +80,228 @@ USER_PROFILES = {
|
|||
}
|
||||
}
|
||||
|
||||
# === CUSTOM LOCAL STORAGE CLIENT (FIXED) ===# Questa classe ora implementa tutti i metodi astratti richiesti da Chainlit 2.8.3
|
||||
# === STORAGE CLIENT ===
|
||||
class LocalStorageClient(BaseStorageClient):
|
||||
"""Storage locale su filesystem per file/elementi"""
|
||||
|
||||
def __init__(self, storage_path: str):
|
||||
self.storage_path = storage_path
|
||||
os.makedirs(storage_path, exist_ok=True)
|
||||
|
||||
async def upload_file(
|
||||
self,
|
||||
object_key: str,
|
||||
data: bytes,
|
||||
mime: str = "application/octet-stream",
|
||||
overwrite: bool = True,
|
||||
) -> Dict[str, str]:
|
||||
async def upload_file(self, object_key: str, data: bytes, mime: str = "application/octet-stream", overwrite: bool = True) -> Dict[str, str]:
|
||||
file_path = os.path.join(self.storage_path, object_key)
|
||||
os.makedirs(os.path.dirname(file_path), exist_ok=True)
|
||||
with open(file_path, "wb") as f:
|
||||
f.write(data)
|
||||
with open(file_path, "wb") as f: f.write(data)
|
||||
return {"object_key": object_key, "url": f"/files/{object_key}"}
|
||||
|
||||
# Implementazione metodi obbligatori mancanti nella versione precedente
|
||||
async def get_read_url(self, object_key: str) -> str:
|
||||
return f"/files/{object_key}"
|
||||
|
||||
async def get_read_url(self, object_key: str) -> str: return f"/files/{object_key}"
|
||||
async def delete_file(self, object_key: str) -> bool:
|
||||
file_path = os.path.join(self.storage_path, object_key)
|
||||
if os.path.exists(file_path):
|
||||
os.remove(file_path)
|
||||
return True
|
||||
path = os.path.join(self.storage_path, object_key)
|
||||
if os.path.exists(path): os.remove(path); return True
|
||||
return False
|
||||
async def close(self): pass
|
||||
|
||||
async def close(self):
|
||||
pass
|
||||
|
||||
# === DATA LAYER ===
|
||||
@cl.data_layer
|
||||
def get_data_layer():
|
||||
return SQLAlchemyDataLayer(
|
||||
conninfo=DATABASE_URL,
|
||||
user_thread_limit=1000,
|
||||
storage_provider=LocalStorageClient(storage_path=STORAGE_DIR)
|
||||
)
|
||||
return SQLAlchemyDataLayer(conninfo=DATABASE_URL, user_thread_limit=1000, storage_provider=LocalStorageClient(STORAGE_DIR))
|
||||
|
||||
# === OAUTH CALLBACK ===
|
||||
# === OAUTH ===
|
||||
@cl.oauth_callback
|
||||
def oauth_callback(
|
||||
provider_id: str,
|
||||
token: str,
|
||||
raw_user_data: Dict[str, str],
|
||||
default_user: cl.User,
|
||||
) -> Optional[cl.User]:
|
||||
def oauth_callback(provider_id: str, token: str, raw_user_data: Dict[str, str], default_user: cl.User) -> Optional[cl.User]:
|
||||
if provider_id == "google":
|
||||
email = raw_user_data.get("email", "").lower()
|
||||
|
||||
# Verifica se utente è autorizzato (opzionale: blocca se non in lista)
|
||||
# if email not in USER_PROFILES:
|
||||
# return None
|
||||
|
||||
# Recupera profilo o usa default Guest
|
||||
profile = USER_PROFILES.get(email, get_user_profile("guest"))
|
||||
|
||||
default_user.metadata.update({
|
||||
"picture": raw_user_data.get("picture", ""),
|
||||
"role": profile["role"],
|
||||
"workspace": profile["workspace"],
|
||||
"rag_collection": profile["rag_collection"],
|
||||
"capabilities": profile["capabilities"],
|
||||
"show_code": profile["show_code"],
|
||||
"display_name": profile["name"]
|
||||
"role": profile["role"], "workspace": profile["workspace"],
|
||||
"rag_collection": profile["rag_collection"], "capabilities": profile["capabilities"],
|
||||
"show_code": profile["show_code"], "display_name": profile["name"]
|
||||
})
|
||||
return default_user
|
||||
return default_user
|
||||
|
||||
# === UTILITY FUNCTIONS ===
|
||||
def get_user_profile(user_email: str) -> Dict:
|
||||
return USER_PROFILES.get(user_email.lower(), {
|
||||
"role": "guest",
|
||||
"name": "Ospite",
|
||||
"workspace": "guest_workspace",
|
||||
"rag_collection": "documents",
|
||||
"capabilities": [],
|
||||
"show_code": False
|
||||
})
|
||||
def get_user_profile(email: str) -> Dict:
|
||||
return USER_PROFILES.get(email.lower(), {"role": "guest", "name": "Ospite", "workspace": "guest_workspace", "rag_collection": "documents", "show_code": False})
|
||||
|
||||
def create_workspace(workspace_name: str) -> str:
|
||||
path = os.path.join(WORKSPACES_DIR, workspace_name)
|
||||
def create_workspace(name: str) -> str:
|
||||
path = os.path.join(WORKSPACES_DIR, name)
|
||||
os.makedirs(path, exist_ok=True)
|
||||
return path
|
||||
|
||||
def save_code_to_file(code: str, workspace: str) -> str:
|
||||
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
||||
file_name = f"code_{timestamp}.py"
|
||||
file_path = os.path.join(WORKSPACES_DIR, workspace, file_name)
|
||||
with open(file_path, "w", encoding="utf-8") as f:
|
||||
f.write(code)
|
||||
return file_path
|
||||
ts = datetime.now().strftime("%Y%m%d_%H%M%S")
|
||||
path = os.path.join(WORKSPACES_DIR, workspace, f"code_{ts}.py")
|
||||
with open(path, "w", encoding="utf-8") as f: f.write(code)
|
||||
return path
|
||||
|
||||
def extract_text_from_pdf(pdf_path: str) -> str:
|
||||
# === PARSING DOCUMENTI ===
|
||||
def extract_text_from_pdf(path: str) -> str:
|
||||
try:
|
||||
doc = fitz.open(pdf_path)
|
||||
text = "\n".join([page.get_text() for page in doc])
|
||||
doc.close()
|
||||
return text
|
||||
except Exception:
|
||||
doc = fitz.open(path)
|
||||
return "\n".join([page.get_text() for page in doc])
|
||||
except: return ""
|
||||
|
||||
def extract_text_from_excel(path: str) -> str:
|
||||
"""Estrae testo da Excel convertendo i fogli in Markdown"""
|
||||
try:
|
||||
xl = pd.read_excel(path, sheet_name=None)
|
||||
text_content = []
|
||||
for sheet, df in xl.items():
|
||||
text_content.append(f"\n--- Foglio Excel: {sheet} ---\n")
|
||||
# Pulisce NaN e converte in stringa
|
||||
clean_df = df.fillna("").astype(str)
|
||||
text_content.append(clean_df.to_markdown(index=False))
|
||||
return "\n".join(text_content)
|
||||
except Exception as e:
|
||||
print(f"❌ Errore Excel: {e}")
|
||||
return ""
|
||||
|
||||
# === QDRANT FUNCTIONS ===
|
||||
async def get_qdrant_client() -> AsyncQdrantClient:
|
||||
return AsyncQdrantClient(url=QDRANT_URL)
|
||||
# === AI & EMBEDDINGS (Remoto) ===
|
||||
async def get_embeddings(text: str) -> dict:
|
||||
"""Ritorna dict con keys 'dense' e 'sparse'"""
|
||||
try:
|
||||
async with httpx.AsyncClient(timeout=30.0) as client:
|
||||
resp = await client.post(
|
||||
f"{BGE_API_URL}/embed",
|
||||
json={"texts": [text]}
|
||||
)
|
||||
if resp.status_code == 200:
|
||||
data = resp.json()
|
||||
# La nuova API ritorna {"data": [{"dense":..., "sparse":...}]}
|
||||
return data["data"][0]
|
||||
except Exception as e:
|
||||
print(f"⚠️ Errore Embedding: {e}")
|
||||
return {}
|
||||
|
||||
async def ensure_collection(collection_name: str):
|
||||
client = await get_qdrant_client()
|
||||
if not await client.collection_exists(collection_name):
|
||||
async def ensure_collection(name: str):
|
||||
client = AsyncQdrantClient(url=QDRANT_URL)
|
||||
if not await client.collection_exists(name):
|
||||
await client.create_collection(
|
||||
collection_name=collection_name,
|
||||
vectors_config=VectorParams(size=768, distance=Distance.COSINE)
|
||||
collection_name=name,
|
||||
vectors_config={
|
||||
"bge_dense": VectorParams(size=1024, distance=Distance.COSINE)
|
||||
},
|
||||
# ABILITIAMO LO SPARSE VECTOR
|
||||
sparse_vectors_config={
|
||||
"bge_sparse": SparseVectorParams(
|
||||
index=SparseIndexParams(
|
||||
on_disk=False, # True se hai poca RAM, ma hai 32GB quindi False è meglio
|
||||
)
|
||||
)
|
||||
}
|
||||
)
|
||||
|
||||
async def get_embeddings(text: str) -> list:
|
||||
client = ollama.Client(host=OLLAMA_URL)
|
||||
try:
|
||||
response = client.embed(model='nomic-embed-text', input=text[:2000])
|
||||
if 'embeddings' in response: return response['embeddings'][0]
|
||||
return response.get('embedding', [])
|
||||
except: return []
|
||||
def chunk_text_by_lines(text: str, max_chars: int = 2500) -> List[str]:
|
||||
"""Taglia il testo raggruppando linee intere senza spezzarle."""
|
||||
lines = text.split('\n')
|
||||
chunks = []
|
||||
current_chunk = ""
|
||||
|
||||
async def index_document(file_name: str, content: str, collection_name: str) -> bool:
|
||||
try:
|
||||
await ensure_collection(collection_name)
|
||||
embedding = await get_embeddings(content)
|
||||
if not embedding: return False
|
||||
for line in lines:
|
||||
# Se la riga è troppo lunga da sola (caso raro), la tagliamo
|
||||
if len(line) > max_chars:
|
||||
if current_chunk: chunks.append(current_chunk)
|
||||
chunks.append(line[:max_chars])
|
||||
current_chunk = ""
|
||||
continue
|
||||
|
||||
qdrant = await get_qdrant_client()
|
||||
await qdrant.upsert(
|
||||
collection_name=collection_name,
|
||||
points=[PointStruct(
|
||||
# Se aggiungere la riga supera il limite, salviamo il chunk attuale
|
||||
if len(current_chunk) + len(line) > max_chars:
|
||||
chunks.append(current_chunk)
|
||||
current_chunk = line + "\n"
|
||||
else:
|
||||
current_chunk += line + "\n"
|
||||
|
||||
if current_chunk:
|
||||
chunks.append(current_chunk)
|
||||
return chunks
|
||||
|
||||
async def index_document(filename: str, content: str, collection: str) -> bool:
|
||||
try:
|
||||
await ensure_collection(collection)
|
||||
|
||||
# --- MODIFICA QUI: Usiamo il chunking intelligente invece di quello brutale ---
|
||||
# Vecchio: chunks = [content[i:i+3000] for i in range(0, len(content), 3000)]
|
||||
chunks = chunk_text_by_lines(content, max_chars=2000)
|
||||
# ---------------------------------------------------------------------------
|
||||
|
||||
qdrant = AsyncQdrantClient(url=QDRANT_URL)
|
||||
points = []
|
||||
|
||||
for i, chunk in enumerate(chunks):
|
||||
vectors = await get_embeddings(chunk)
|
||||
|
||||
if vectors:
|
||||
points.append(PointStruct(
|
||||
id=str(uuid.uuid4()),
|
||||
vector=embedding,
|
||||
payload={"file_name": file_name, "content": content[:3000], "indexed_at": datetime.now().isoformat()}
|
||||
)]
|
||||
vector={
|
||||
"bge_dense": vectors["dense"],
|
||||
"bge_sparse": models.SparseVector(
|
||||
indices=vectors["sparse"]["indices"],
|
||||
values=vectors["sparse"]["values"]
|
||||
)
|
||||
},
|
||||
payload={"file_name": filename, "content": chunk, "chunk_id": i}
|
||||
))
|
||||
|
||||
if points:
|
||||
await qdrant.upsert(collection_name=collection, points=points)
|
||||
return True
|
||||
except: return False
|
||||
except Exception as e:
|
||||
print(f"Index Error: {e}")
|
||||
return False
|
||||
|
||||
async def search_qdrant(query: str, collection: str) -> str:
|
||||
try:
|
||||
client = await get_qdrant_client()
|
||||
client = AsyncQdrantClient(url=QDRANT_URL)
|
||||
if not await client.collection_exists(collection): return ""
|
||||
emb = await get_embeddings(query)
|
||||
if not emb: return ""
|
||||
res = await client.query_points(collection_name=collection, query=emb, limit=3)
|
||||
return "\n\n".join([hit.payload['content'] for hit in res.points if hit.payload])
|
||||
except: return ""
|
||||
|
||||
# === CHAINLIT HANDLERS ===
|
||||
vectors = await get_embeddings(query)
|
||||
if not vectors: return ""
|
||||
|
||||
# HYBRID QUERY (RRF FUSION)
|
||||
res = await client.query_points(
|
||||
collection_name=collection,
|
||||
prefetch=[
|
||||
models.Prefetch(
|
||||
query=vectors["dense"],
|
||||
using="bge_dense",
|
||||
limit=10,
|
||||
),
|
||||
models.Prefetch(
|
||||
query=models.SparseVector(
|
||||
indices=vectors["sparse"]["indices"],
|
||||
values=vectors["sparse"]["values"]
|
||||
),
|
||||
using="bge_sparse",
|
||||
limit=20,
|
||||
),
|
||||
],
|
||||
# --- CORREZIONE QUI SOTTO (da 'method' a 'fusion') ---
|
||||
query=models.FusionQuery(fusion=models.Fusion.RRF),
|
||||
limit=12
|
||||
)
|
||||
|
||||
return "\n\n".join([f"📄 {hit.payload['file_name']}:\n{hit.payload['content']}" for hit in res.points if hit.payload])
|
||||
except Exception as e:
|
||||
print(f"Search Error: {e}") # Questo è quello che vedevi nei log
|
||||
return ""
|
||||
|
||||
return "\n\n".join([f"📄 {hit.payload['file_name']}:\n{hit.payload['content']}" for hit in res.points if hit.payload])
|
||||
except Exception as e:
|
||||
print(f"Search Error: {e}")
|
||||
return ""
|
||||
|
||||
# === CHAT LOGIC ===
|
||||
@cl.on_chat_start
|
||||
async def on_chat_start():
|
||||
user = cl.user_session.get("user")
|
||||
|
||||
if not user:
|
||||
# Fallback locale se non c'è auth
|
||||
user_email = "guest@local"
|
||||
profile = get_user_profile(user_email)
|
||||
email = "guest@local"
|
||||
profile = get_user_profile(email)
|
||||
else:
|
||||
user_email = user.identifier
|
||||
# I metadati sono già popolati dalla callback oauth
|
||||
profile = USER_PROFILES.get(user_email, get_user_profile("guest"))
|
||||
email = user.identifier
|
||||
profile = USER_PROFILES.get(email, get_user_profile("guest"))
|
||||
|
||||
# Salva in sessione
|
||||
cl.user_session.set("email", user_email)
|
||||
cl.user_session.set("email", email)
|
||||
cl.user_session.set("role", profile["role"])
|
||||
cl.user_session.set("workspace", profile["workspace"])
|
||||
cl.user_session.set("rag_collection", profile["rag_collection"])
|
||||
|
|
@ -254,91 +309,65 @@ async def on_chat_start():
|
|||
|
||||
create_workspace(profile["workspace"])
|
||||
|
||||
# === SETTINGS WIDGETS ===
|
||||
settings_widgets = [
|
||||
cl.input_widget.Select(
|
||||
id="model",
|
||||
label="Modello AI",
|
||||
values=["glm-4.6:cloud", "llama3.2", "mistral", "qwen2.5-coder:32b"],
|
||||
initial_value="glm-4.6:cloud",
|
||||
),
|
||||
cl.input_widget.Slider(
|
||||
id="temperature",
|
||||
label="Temperatura",
|
||||
initial=0.7, min=0, max=2, step=0.1,
|
||||
),
|
||||
settings = [
|
||||
cl.input_widget.Select(id="model", label="Modello", values=["glm-4.6:cloud", "llama3"], initial_value="glm-4.6:cloud"),
|
||||
cl.input_widget.Slider(id="temp", label="Temperatura", initial=0.5, min=0, max=1, step=0.1)
|
||||
]
|
||||
if profile["role"] == "admin":
|
||||
settings_widgets.append(cl.input_widget.Switch(id="rag_enabled", label="Abilita RAG", initial=True))
|
||||
settings.append(cl.input_widget.Switch(id="rag", label="RAG Attivo", initial=True))
|
||||
|
||||
await cl.ChatSettings(settings_widgets).send()
|
||||
|
||||
await cl.Message(
|
||||
content=f"👋 Ciao **{profile['name']}**!\n"
|
||||
f"Ruolo: `{profile['role']}` | Workspace: `{profile['workspace']}`\n"
|
||||
).send()
|
||||
await cl.ChatSettings(settings).send()
|
||||
await cl.Message(content=f"👋 Ciao **{profile['name']}**! Pronto per l'automazione.").send()
|
||||
|
||||
@cl.on_settings_update
|
||||
async def on_settings_update(settings):
|
||||
cl.user_session.set("settings", settings)
|
||||
await cl.Message(content="✅ Impostazioni aggiornate").send()
|
||||
async def on_settings_update(s): cl.user_session.set("settings", s)
|
||||
|
||||
@cl.on_message
|
||||
async def on_message(message: cl.Message):
|
||||
workspace = cl.user_session.get("workspace")
|
||||
rag_collection = cl.user_session.get("rag_collection")
|
||||
user_role = cl.user_session.get("role")
|
||||
show_code = cl.user_session.get("show_code")
|
||||
|
||||
role = cl.user_session.get("role")
|
||||
settings = cl.user_session.get("settings", {})
|
||||
model = settings.get("model", "glm-4.6:cloud")
|
||||
temperature = settings.get("temperature", 0.7)
|
||||
rag_enabled = settings.get("rag_enabled", True) if user_role == "admin" else True
|
||||
|
||||
# 1. GESTIONE FILE
|
||||
# 1. FILE UPLOAD (PDF & EXCEL)
|
||||
if message.elements:
|
||||
for element in message.elements:
|
||||
dest = os.path.join(WORKSPACES_DIR, workspace, element.name)
|
||||
shutil.copy(element.path, dest)
|
||||
if element.name.endswith(".pdf"):
|
||||
text = extract_text_from_pdf(dest)
|
||||
if text:
|
||||
await index_document(element.name, text, rag_collection)
|
||||
await cl.Message(content=f"✅ **{element.name}** indicizzato.").send()
|
||||
for el in message.elements:
|
||||
dest = os.path.join(WORKSPACES_DIR, workspace, el.name)
|
||||
shutil.copy(el.path, dest)
|
||||
|
||||
# 2. RAG
|
||||
context = ""
|
||||
if rag_enabled:
|
||||
context = await search_qdrant(message.content, rag_collection)
|
||||
content = ""
|
||||
if el.name.endswith(".pdf"):
|
||||
content = extract_text_from_pdf(dest)
|
||||
elif el.name.endswith((".xlsx", ".xls")):
|
||||
await cl.Message(content=f"📊 Analisi Excel **{el.name}**...").send()
|
||||
content = extract_text_from_excel(dest)
|
||||
|
||||
system_prompt = "Sei un assistente esperto."
|
||||
if context: system_prompt += f"\n\nCONTESTO:\n{context}"
|
||||
if content:
|
||||
ok = await index_document(el.name, content, rag_collection)
|
||||
icon = "✅" if ok else "❌"
|
||||
await cl.Message(content=f"{icon} **{el.name}** elaborato.").send()
|
||||
|
||||
# 2. RAG & GENERATION
|
||||
rag_active = settings.get("rag", True) if role == "admin" else True
|
||||
context = await search_qdrant(message.content, rag_collection) if rag_active else ""
|
||||
|
||||
prompt = "Sei un esperto di automazione industriale."
|
||||
if context: prompt += f"\n\nUSA QUESTO CONTESTO (Manuali/Excel):\n{context}"
|
||||
|
||||
# 3. GENERAZIONE
|
||||
client = ollama.AsyncClient(host=OLLAMA_URL)
|
||||
msg = cl.Message(content="")
|
||||
await msg.send()
|
||||
|
||||
try:
|
||||
client = ollama.AsyncClient(host=OLLAMA_URL)
|
||||
stream = await client.chat(
|
||||
model=model,
|
||||
messages=[{"role": "system", "content": system_prompt}, {"role": "user", "content": message.content}],
|
||||
options={"temperature": temperature},
|
||||
model=settings.get("model", "glm-4.6:cloud"),
|
||||
messages=[{"role": "system", "content": prompt}, {"role": "user", "content": message.content}],
|
||||
options={"temperature": settings.get("temp", 0.5)},
|
||||
stream=True
|
||||
)
|
||||
|
||||
full_resp = ""
|
||||
async for chunk in stream:
|
||||
token = chunk['message']['content']
|
||||
full_resp += token
|
||||
await msg.stream_token(token)
|
||||
await msg.update()
|
||||
await msg.stream_token(chunk['message']['content'])
|
||||
except Exception as e:
|
||||
await msg.stream_token(f"Errore connessione AI: {e}")
|
||||
|
||||
# 4. SALVATAGGIO CODICE
|
||||
if show_code:
|
||||
blocks = re.findall(r"``````", full_resp, re.DOTALL)
|
||||
elements = []
|
||||
for code in blocks:
|
||||
path = save_code_to_file(code.strip(), workspace)
|
||||
elements.append(cl.File(name=os.path.basename(path), path=path, display="inline"))
|
||||
if elements:
|
||||
await cl.Message(content="💾 Codice salvato", elements=elements).send()
|
||||
await msg.update()
|
||||
|
|
@ -27,3 +27,7 @@ sniffio
|
|||
aiohttp
|
||||
boto3>=1.28.0
|
||||
azure-storage-file-datalake>=12.14.0
|
||||
# NUOVI PER EXCEL
|
||||
pandas
|
||||
openpyxl
|
||||
tabulate
|
||||
|
|
|
|||
Loading…
Reference in New Issue