from __future__ import annotations as _annotations import functools import inspect from collections.abc import Callable from functools import cached_property from typing import TYPE_CHECKING, Any from pydantic import BaseModel, Field from mcp.server.fastmcp.exceptions import ToolError from mcp.server.fastmcp.utilities.context_injection import find_context_parameter from mcp.server.fastmcp.utilities.func_metadata import FuncMetadata, func_metadata from mcp.shared.exceptions import UrlElicitationRequiredError from mcp.shared.tool_name_validation import validate_and_warn_tool_name from mcp.types import Icon, ToolAnnotations if TYPE_CHECKING: from mcp.server.fastmcp.server import Context from mcp.server.session import ServerSessionT from mcp.shared.context import LifespanContextT, RequestT class Tool(BaseModel): """Internal tool registration info.""" fn: Callable[..., Any] = Field(exclude=True) name: str = Field(description="Name of the tool") title: str | None = Field(None, description="Human-readable title of the tool") description: str = Field(description="Description of what the tool does") parameters: dict[str, Any] = Field(description="JSON schema for tool parameters") fn_metadata: FuncMetadata = Field( description="Metadata about the function including a pydantic model for tool arguments" ) is_async: bool = Field(description="Whether the tool is async") context_kwarg: str | None = Field(None, description="Name of the kwarg that should receive context") annotations: ToolAnnotations | None = Field(None, description="Optional annotations for the tool") icons: list[Icon] | None = Field(default=None, description="Optional list of icons for this tool") meta: dict[str, Any] | None = Field(default=None, description="Optional metadata for this tool") @cached_property def output_schema(self) -> dict[str, Any] | None: return self.fn_metadata.output_schema @classmethod def from_function( cls, fn: Callable[..., Any], name: str | None = None, title: str | None = None, description: str | None = None, context_kwarg: str | None = None, annotations: ToolAnnotations | None = None, icons: list[Icon] | None = None, meta: dict[str, Any] | None = None, structured_output: bool | None = None, ) -> Tool: """Create a Tool from a function.""" func_name = name or fn.__name__ validate_and_warn_tool_name(func_name) if func_name == "": raise ValueError("You must provide a name for lambda functions") func_doc = description or fn.__doc__ or "" is_async = _is_async_callable(fn) if context_kwarg is None: # pragma: no branch context_kwarg = find_context_parameter(fn) func_arg_metadata = func_metadata( fn, skip_names=[context_kwarg] if context_kwarg is not None else [], structured_output=structured_output, ) parameters = func_arg_metadata.arg_model.model_json_schema(by_alias=True) return cls( fn=fn, name=func_name, title=title, description=func_doc, parameters=parameters, fn_metadata=func_arg_metadata, is_async=is_async, context_kwarg=context_kwarg, annotations=annotations, icons=icons, meta=meta, ) async def run( self, arguments: dict[str, Any], context: Context[ServerSessionT, LifespanContextT, RequestT] | None = None, convert_result: bool = False, ) -> Any: """Run the tool with arguments.""" try: result = await self.fn_metadata.call_fn_with_arg_validation( self.fn, self.is_async, arguments, {self.context_kwarg: context} if self.context_kwarg is not None else None, ) if convert_result: result = self.fn_metadata.convert_result(result) return result except UrlElicitationRequiredError: # Re-raise UrlElicitationRequiredError so it can be properly handled # as an MCP error response with code -32042 raise except Exception as e: raise ToolError(f"Error executing tool {self.name}: {e}") from e def _is_async_callable(obj: Any) -> bool: while isinstance(obj, functools.partial): # pragma: no cover obj = obj.func return inspect.iscoroutinefunction(obj) or ( callable(obj) and inspect.iscoroutinefunction(getattr(obj, "__call__", None)) )