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Questa raccolta di appunti non ha pretese di esaustività nei confronti di una materia, come la meccanica strutturale, 
complessa ed articolata. E’ un compendio delle nozioni base della disciplina che sono di ausilio ad uno studente che si 
confronta con la stessa per la prima volta.
Gli argomenti, sviluppati consequenzialmente, cercano di seguire un iter logico che porti il fruitore ad uno studio lineare 
dell’argomento, dalle basi ai temi più complessi; dalla teoria dei vettori, come modello meccanico delle azioni, al modello 
geometrico di trave e semplici sistemi di travi, al concetto di isostaticità ed iperstaticità, condizioni di equilibrio e congru-
enza, sino a giungere a concetti elementari della meccanica dei continui. Inoltre, sono stati inseriti richiami di matematica 
e geometria ove necessario, al fine di non lasciare dubbi su quanto viene dimostrato di volta in volta. Anche gli esercizi 
svolti contengono talvolta precisazioni e metodologie utili, non affrontate in sede teorica.
Si auspica, quindi, che queste poche pagine possano rendere il mondo della meccanica strutturale meno ostico per chi 
lo affronta, e forse far nascere passione per la materia.
Questi appunti, redatti da Paolo Angelozzi, contengono traccia delle mie lezioni per i corsi di Meccanica Strutturale 1 e 
Meccanica Strutturale 2 e possono rappresentare un valido strumento per gli studenti che come Paolo si avvicinano alle 
tematiche della meccanica strutturale. E’ per me motivo di orgoglio vedere come l’impegno e la costanza di Paolo hanno 
permesso di mettere a punto questo valido supporto al programma che svolgo nel corso di Laurea triennale in Scienze 
dell’Architettura.

Antonella Cecchi
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_Vettori liberi. 

Un vettore è un modello matematico utilizzabile per la rappresentazione di azioni meccaniche.

È caratterizzato da: 
- un modulo 
- una direzione (retta d’appartenenza al vettore) 
- un verso (da A a B)

Quindi un vettore è un segmento orientato dotato di modulo, direzione e verso.
Il vettore viene indicato con una lettera minuscola sottolineata u, o come differenza fra i punti 
definenti il modulo (es. A–B).

Dati due vettori v1 e v2
è possibile procedere a  
diverse operazioni. 

Vettore somma.
Si intende ridurre questo sistema di vettori ad un sistema di un unico vettore equivalente, 
risultante dei due vettori. 

metodo A (il parallelogramma)
a. far coincidere i punti di partenza dei due vettori 
b. tracciare le rette direzionali di v1 e v2
c. tracciare le parallele alle rette passanti nei punti finali dei vettori 
d. tracciare, dalle partenze dei vettori, un vettore fino all’intersezione fra le due nuove rette  

 si ottiene v3, risultante dei due vettori. 

metodo B
traslare i vettori v1 e v2 nelle rispettive terminazioni, trovando la risultante. 

A

B
u u  = A-B 

v1 v2

v1 v2

v3

v1

v2

v3

A. B.

A.1
TEORIA DEI VETTORI
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Vettore differenza.
Graficamente, corrisponde alla diagonale minore del parallelogramma. 

v3 = v1 + v2
v2 = v3 – v1

Prodotto di un vettore per uno scalare.
Dati il vettore v ed il numero reale , il prodotto v*  fra il vettore e lo scalare può restituire:

- per >0 un vettore con verso concorde a quello di partenza 
- per <0 un vettore con verso opposto 
- per 0< <1 un vettore più piccolo di quello di partenza, verso concorde 
- per >1 un vettore più grande di quello di partenza, verso concorde 

Prodotto scalare (o prodotto interno).
Ogni vettore, idealmente posto in un piano cartesiano, possiede una componente orizzontale 
ed una verticale; per definirle si associano agli assi       due versori unitari i e j. Due versori 
unitari non dipendenti linearmente sono la base per individuare ogni vettore del piano. 

v = 2j + 3i 

Rappresentazione trigonometrica: 

v =     v sen 2 + v cos 2

v1 v2
-v1v2

A. B.

-v1
v4

v4

v4

v
j

i

y

x

v = 3
2

v3

v

y

v sen

v cos
x

xy

prodotto scalare = vettore forza * vettore spostamento = lavoro = un numero k.

F * u = k 

F = 3i – 2j 
u = 2i 
F * u = 3i*2i – 2j*0j = 6 (i versori, essendo unitari, valgono 1).

In sostanza il prodotto scalare restituisce l’entità del vettore, è la componente di un vettore 
secondo la direzione (espressa in seno e coseno) di un altro vettore.

Nel piano: 

i*i (leggasi “i scalare i”)  
= componente del modulo per coseno di 0   
= 1*1 = 1. 

i*j (leggasi “i scalare j”)  
= componente del modulo per coseno di /2
= 1*0 = 0. 

 il prodotto scalare di vettori ortogonali fra 
loro è zero.

-esempio pratico- 

? = Determinare f in modo che i due vettori siano ortogonali. 
v1 * v2 = 0 
1i * 3i + 2j * (-1j) + 1k * f = 0 
3 – 2 + f = 0 
f = -1 

 i j k 
i i*i

1*1=1
i*j

1*0=0
i*k
0

j j*i
1*0=0

j*j
1*1=1

j*k
0

k k*i
0

k*j
0

k*k
1

u vettore
spostamento

F vettore forza

F = 3
-2

v1 = 
i=1
j=2
k=1

v2 = 
i=3
j=-1

f

j
i

y

x
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Prodotto vettoriale (o prodotto esterno).
Dati due vettori v1 e v2, il prodotto vettoriale v1  v2 restituisce un vettore ortogonale ai due 
vettori di partenza.

_Vettori applicati. 

Nelle strutture si parla di vettori applicati (siano essi forze o spostamenti), i quali non possono 
essere spostati liberamente nello spazio, ma solamente secondo la loro retta d’azione. In una 
struttura, inoltre, le forze devono essere in equilibrio, e cioè avere uguale modulo, uguale 
direzione ma verso opposto. 

E’ evidente che per equilibrare il sistema servono la risultante [R] delle forze in gioco ed il 
braccio di applicazione delle forze.

F1 : a = F2 : b 

In questo modo è possibile spostare gli assi di applicazioni delle forze, aggiungendo un 
momento di trasporto creato dalle forze di partenza. 

momento = forza [F] * lunghezza [l]
 coppia di forze uguali in modulo

      e direzione ma opposte in verso.

N.b. le forze si misurano in Newton [N], ed i momenti in Newton per metri [N*m] 

 i j k 
i i  i 

0
i  j 
+1

i  k 
–1

j j  i 
–1

j  j 
0

j  k 
+1

k k  i 
+1

k  j 
–1

k  k 
0

a b 

F1 F2 F1

F2

=     R 

F1
F2

a
b=

v1 v2

v1  v2

l
F

F

-esempio pratico (pilastro con trave a sbalzo)- 

In questo modo si ottiene un sistema equivalente a quello di partenza, ovverosia un sistema 
che ha gli stessi effetti di quello iniziale.
È possibile ottenere la risultante complessiva del sistema (Rt) traslando solamente i vettori 
lungo la loro retta d’azione, operazione lecita con i vettori applicati. 

Ripetendo, qualsiasi sistema può essere ricondotto ad un sistema equivalente in un asse 
parallelo, con l’aggiunta di un momento di trasporto; ma è necessario prendere la distanza       
l ortogonale alla retta d’azione della forza.

F FF        =Fl

l

FFl

l

Fl

F
 reazione 

v1
v2

v3
v1 v2

R1

v3 v3

R1

Rt

F

F’

Fl

l
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-esempi pratici- 

A B due forze producono un momento applicato nel baricentro
A = C due forze si elidono
A = D le forze producono due momenti         opposti che si elidono. Rimane la 

forza F applicata come in A
A E differente retta d’azione della forza
A = F uguale retta d’azione

_Poligono funicolare. 
Metodo grafico per l’individuazione della risultante e dell’asse centrale di vettori applicati.
Dati tre vettori v1, v2 e v3

a. trattare i vettori come fossero vettori liberi e trovare la risultante. 
b. scegliere un polo arbitrario O.
c. tracciare le congiungenti con i poli dei vettori. 

N.b. ad esempio, v1 è anche uguale al percorso delle sue congiungenti. 

F

l

F

l

F

F

A. B.

F

l

F

C.

2F

l

F

F

D.

F

F

F

l

E.

F

l

F.

Fl

FlFl

v1

v3v2

d. riportare, partendo da un punto qualsiasi, le parallele alle congiungenti sulle rette d’azione 
dei tre vettori. 

e. prolungare d1 e d4, ripetendo la precedente operazione per un paio di volte; si ottengono i 
punti per cui passa l’asse centrale del sistema (AC).

- Dati due vettori paralleli concordi, l’asse centrale è parallelo alla direzione dei vettori e 
cade fra di essi, più prossimo al vettore possedente maggior modulo. 

- Dati due vettori paralleli discordi, l’asse centrale cade all’esterno dei due vettori, più 
prossimo al vettore possedente maggior modulo. 

v1

v3

v2 R

v1

v3

v2 R

O
d1

d2

d3
d4

v1
O

d1
d2

v1

v3v2

v1

v3v2

d1
d2

d3

d4

d1

d4

=d1
=d4

AC
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A.2
VINCOLI ED EQUILIBRIO

Travi e pilastri sono oggetti monodimensionali, e cioè oggetti con 
una dimensione predominante  le dimensioni della sezione 
sono piccole se confrontate con la lunghezza, e quindi 
approssimabili ad una linea passante per l’asse baricentrico 
dell’oggetto modello monodimensionale = linea congiungente 
i baricentri delle diverse sezioni.

Setti e pannelli necessitano invece di un modello bidimensionale,
basato sulla superficie media (luogo geometrico dei baricentri 
dello spessore). 

Esempio di schematizzazione strutturale: 

Il problema sorge nelle giunzioni fra elementi (travi, pilastri, suolo)  vengono posti dei vincoli
al moto rigido dell’oggetto, determinando movimenti leciti ed illeciti  il vincolo espleta delle 
azioni uguali e contrarie a quelle che agiscono sulla struttura, neutralizzandole reazione.
Le strutture affrontate d’ora in poi saranno quindi ferme ed in equilibrio.

_Gradi di libertà nel piano. 
nello spazio = 6 (tre traslazioni, tre rotazioni) 
nel piano = 3 (due traslazioni, una rotazione) 

u = spostamento parallelo all’asse x
v = spostamento parallelo all’asse y

 = rotazione intorno all’asse z

v

y

xu

= CONVENZIONE POSITIVA

v
u

+ + + (antioraria)

V
H

M

azioni
verticali

azioni
orizzontali

azioni
di rotazione 

.
G
Asse longitudinale 
(luogo geometrico dei 
baricentri delle sezioni) 

sezione
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_Alcuni tipi di vincolo. 

- Appoggio o carrello (vincolo semplice bilatero) 
impedisce che l’oggetto trasli secondo una direzione, 
vincolando un grado di libertà. 

cinematica statica
u  0  H = 0 
v = 0  V  0 

 0  M = 0 

L’appoggio può espletare una reazione uguale e contraria 
alla forza agente. 

N.b. quando un oggetto è “appoggiato” ad un altro non lo compene-
tra ma neanche può staccarsene = vincolo “bilatero”. 

- Cerniera (vincolo doppio)  
impedisce due traslazioni, vincolando due gradi di libertà. 

cinematica statica
u = 0  H  0 
v = 0  V  0 

 0  M = 0 

La cerniera espleta due reazioni uguali e contrarie alle 
forze agenti; non espleta reazioni alla rotazione. 

- Incastro (vincolo triplo) 
vincola tutti i gradi di libertà, reagendo con una coppia di 
forze.

cinematica statica
u = 0  H  0 
v = 0  V  0 

 = 0  M  0 

L’incastro espleta tre reazioni uguali e contrarie alle forze agenti. 

incognita

F

F

incognite

incognite

- Biella
impedisce lo spostamento verticale ed in parte quello 
orizzontale; non impedisce la rotazione. 

cinematica statica
0   u  K  H = f(u)
v = 0  V  0 

 0  M = 0 

- Doppio pendolo (due bielle vicine in parallelo) 
impedisce lo spostamento verticale ed in parte quello 
orizzontale; impedisce anche la rotazione. 

cinematica statica
0   u  K  H = f(u)
v = 0  V  0 

 = 0  M  0 

_Tipi di strutture.
Controllando il rapporto fra gradi di libertà della struttura e numero dei vincoli, è possibile 
individuare tre tipi di struttura: 

- Se GdL struttura > n.vincoli struttura labile 
- Se GdL struttura = n.vincoli struttura isostatica 
- Se GdL struttura < n.vincoli struttura iperstatica 

N.b. la verifica dell’iperstaticità di una struttura dipende dalla posizione dei vincoli e da quali
gradi di libertà impediscono.

Struttura labile Vincoli ben disposti 
(impediscono anche la rotazione) 
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I vincoli trattati finora sono detti lisci (si prescinde da qualsiasi fenomeno di attrito) e bilateri
(impediscono lo spostamento nella direzione della reazione e nella sua contraria)  Ad 
esempio, in un oggetto appoggiato non si può verificare né la situazione A (compenetrazione 
di una superficie), né la B (distacco dalla medesima). 

_Linee d’azione delle reazioni nei vincoli. 

Nell’appoggio sono noti il verso e la direzione della reazione, 
poiché il medesimo impedisce unicamente gli spostamenti 
perpendicolari al pattino. 

La cerniera non espleta reazioni di tipo momento. La linea 
d’azione delle reazioni passa sicuramente per il punto di cer-
niera, ma non se ne conosce a priori il coefficiente angolare. 

Nell’incastro la linea d’azione delle reazioni non passerà per il 
vincolo; non è possibile conoscerne a priori punti noti ed inclina-
zione.

A. B.

_Equilibrio di una struttura.

Una struttura si dice in equilibrio quando le forze agenti sono bilanciate da reazioni uguali e 
contrarie. Tale condizione, comunque, è necessaria ma non sufficiente; ad esempio, la 
seguente struttura è in equilibrio, ma risulta labile.

È possibile procedere al calcolo solo dopo aver appurato l’isostaticità della struttura in analisi 
(GdL = n.vincoli). 

In sostanza, per far sì che una struttura sia in equilibrio le sommatorie di tutte le forze ed i 
momenti agenti su di essa devono essere pari a zero.

Fi = 0 Fi = F(agenti) + F(reagenti) 

Mi = 0 Mi = M(agenti) + M(reagenti)

Da queste equazioni derivano le tre equazioni fondamentali della statica:

Hi = 0 
 la sommatoria delle azioni orizzontali deve essere pari a zero

Vi = 0 
 la sommatoria delle azioni verticali deve essere pari a zero

Mi = 0 
 la sommatoria dei momenti deve essere pari a zero 

F

F
2

F
2

l l
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-esempio pratico- 

È possibile procedere mediante due sistemi di risoluzione: grafico ed analitico.

Nel sistema grafico si procede, innanzitutto, disegnando un sistema equivalente alla struttura 
di partenza  si ridisegna la struttura, e mediante la linea delle pressioni si trasportano le 
forze nei vincoli, determinando in seguito le reazioni che il vincolo espleta. 

\

Nel sistema analitico si applicano le tre equazioni fondamentali della statica alla struttura, 
sostituendo il vincolo con le reazioni che può espletare. 

Hi = 0   H = 0 
Vi = 0   V – F = 0   V = F 
Mi = 0   M – F*l = 0   M = Fl

N.b. il punto di riferimento per il calcolo del momento è l’incastro. 

F

l incognite 

F
M

H
V

F

l

F

l

Fl

F
Fl

F Linea delle pressioni 
dove agisce l’unica forza 
presente nel sistema
(c.v.d. non passante per 
l’incastro) 

F
M

H
V

_Esercizio n.01

Hi = 0
H – F = 0   H = F

Vi = 0 
V = 0 

Mi = 0 
M – F*l /2 = 0   M = Fl/2

l

l

M

H
V

F

l
F

l/2

l/2

Fl/2

F

l/2

l
FF

l/2
F

Fl/2

F

F
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_Esercizio n.02

Hi = 0
H – F/ 2 = 0   H = F/ 2

Vi = 0 
V – F/ 2 = 0   V= F/ 2

Mi = 0 
M – F/ 2*l = 0   M = Fl/ 2

F

l

F

l

l/ 2

Fl/ 2

45°

l

M

H
V

F/ 2

F/ 2

F

l
F

l/ 2
F

Fl/ 2

F

F/ 2

F/ 2

F

F

_Esercizio n.03

Hi = 0
HA – F/ 2 = 0   HA = F/ 2

Vi = 0 
VA – F/ 2 + VB = 0

MA (calcolo del momento in A) = 0 
M – F/ 2*l/2 + VB*l = 0   M = Fl/2 2 – VBl

 VB = F/2 2
 VA = F/ 2 – F/2 2  VA = F/2 2

l/2 l/2

F
45°

l/2 l/2

F
45°

F FB

A B 

A B 

FA

FA FB

l/2 l/2

F
45°

F RB

A B 

RA

RA

RB

F

F/ 2

F/ 2

A B 

l/2 l/2

HA

VA VB

F/ 2

F/ 2

Lp2

Lp1

Lp2

Lp1

Considerazioni
La linea delle pressioni passa per 
entrambi i vincoli  si hanno due linee 
delle pressioni. Per determinarle si parte 
dell’appoggio, la cui direzione della 
reazione è nota, individuando Lp1;
l’intersezione fra Lp1 e linea d’azione 
della forza e la cerniera sono i due punti 
che determinano la Lp2.
Per le reazioni si costruisce il “parallelo-
gramma” all’inverso, utilizzando le due 
rette direzionali Lp1 ed Lp2.
N.b. l’inclinazione ed il verso di RA
permette di ipotizzare, senza procedere 
alla soluzione analitica, il verso di VA ed 
HA.
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_Esercizio n.04

Hi = 0
HA – F/ 2 = 0   HA = F/ 2

Vi = 0 
VA – F/ 2 + VD = 0

MA = 0 
M – F/ 2*3l/2 – F/ 2*l/2 + VD*2l = 0

 M = 2Fl/ 2 – 2VDl
 VD = F/ 2
 VA = 0 

Lp1 valida da D a C 
Lp2 valida da C ad A 

F
45°

A

l/2

l/2

F

A

l/2

l/2

Lp2

Lp1

FA

FD

l

F

A

l/2 l/2

Lp2

Lp1
RA

RD

l

A

l/2 l/2

l/2

l/2

F/ 2

F/ 2

VD

HA VA

Considerazioni
La soluzione analitica conferma quanto 
già appurato mediante il metodo 
grafico, e cioè che la cerniera espleta 
solamente una reazione orizzontale. 

l/2

l/2

B

D

C

B

D

C

B

D

C

B

D

C

l l/2 l/2

l l/2 l/2

_Esercizio n.05

Hi = 0
H – F/ 2 = 0   H = F/ 2

Vi = 0 
V – F/ 2  = 0   V = F/ 2

Mi = 0 
M – F/ 2*2l + F/ 2*2l   M = 0 

Diagramma di corpo libero 
Si ridisegna la struttura, senza vincoli, 
mettendo al posto delle incognite le 
reazioni calcolate. 

2l

2l

F45°

2l

2l

F

F

2l

2lM

H

V

F/ 2
F/ 2

F/ 2
F/ 2

F/ 2
F/ 22l

2l
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_Esercizio n.06

Hi = 0
HA – F/ 2 = 0   HA = F/ 2

Vi = 0 
– VA + VB – F/ 2 = 0

MA
M –  F/ 2*3l/2 + VB*l

 M = 3Fl/2 2 – VBl

 VB = 3F/2 2

 VA = 3F/2 2 – F/ 2
 VA = F/2 2

Lp1 valida da C a B 
Lp2 valida da B ad A 

l l/2

F
45°

A
B

l l/2

F

A
B

Lp2 Lp1

C

C

RB

RA

F

RB

RA

l l/2

A
B

C
HA

VA

VB

F/ 2
F/ 2

l l/2

A
B

C
F/ 2

F/2 2

3F/2 2

F/ 2F/ 2

_Esercizio n.07

Hi = 0
HA – F/ 2 = 0   HA = F/ 2

Vi = 0 
– VA – F/ 2 + VC = 0

MA = 0 
M – F/ 2*l – F/ 2*5l/2 +
+ VC*2l = 0  M = 7Fl/2 2 – 2VCl

 VC = 7F/4 2
 VA = 3F /4 2

 Lp1 valida da D a C 
 Lp2 valida da C ad A 

l

A

C

l

l

45°
D

l/2

Lp2 Lp1

l

A

C

l

l

F

D

l/2

F
RC

RA

RA

RC

l

A

C

l

l

D

l/2

HA

VA

VC

F/ 2F/ 2

l

A

C

l

l

D

l/2

F/ 2

3F/4 2

7F/4 2

F/ 2F/ 2

B

B

B

B

F
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_Esercizio n.08

Hi = 0
HA – F/ 2 = 0   HA = F/ 2

Vi = 0 
VA – F/ 2 + VC = 0

MA = 0 
M – F/ 2*l + VC*2l = 0

 M = Fl/ 2 – 2VCl
 VC = F/2 2
 VA = F/2 2

Lp1 valida da C a B 
Lp2 valida da B ad A 

A

C

l

45°

D

Lp2 Lp1

A

C

l

D

F
RC

RA

RA

RC

B

B
F

45°
F

A

C

l

D

HA

VA

VC

F/ 2F/ 2

B

A

C
D

F/ 2

F/2 2

F/ 2F/ 2

F/2 2

La soluzione di questo esercizio può 
essere addizionata a quella del precedente 

 in caso di molteplici forze agenti il 
sistema può essere scomposto ed analiz-
zato per parti. 

l l l/2

l l l/2

l l l/2l l l/2

_Esercizio n.09

Hi = 0
H = 0 

Vi = 0 
V – ql/2 = 0   V = ql/2

Mi = 0 
M – ql/2*5l/4 = 0

 M = 5ql²/8

l

l/2

l/2

l

l/2

l/2

q

5ql²/8

ql/2 ql/2

l

l/2

l/2

ql/2

M

H
V

l

l/2

l/2

5ql²/8

ql/2 ql/2
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A.3
CARATTERISTICHE DI SOLLECITAZIONE

Come viene sollecitato ogni punto della trave?

La materia trasmette le forze da un punto all’altro 
fino a farle giungere nei vincoli. È necessario quindi 
analizzare le caratteristiche di sollecitazione interna
della trave. 

Divedendo la trave in n sezioni, ogni sezione della 
trave risulterebbe come “incollata”, solidale alla 
successiva. Ad esempio, immaginando di sorreggere 
una pila di libri, spingendo ai lati rimane unita, ma se 
la forza viene meno il tutto collassa. 

Nell’analisi viene idealmente considerato un concio
di trave, e cioè una parte di trave compresa fra due 
sezioni della stessa, eseguite a distanza x fra loro. 

_Convenzione positiva in un concio di trave. 

- Sforzo Normale N : due forze uguali in direzione ed opposte in verso; azioni lungo 
l’asse della trave di trazione (positive) e compressione (negative). 

- Taglio T : tensioni tangenziali, positive se il concio ruota in senso orario. 

- Momento Flettente M      : due coppie di forze uguali ed opposte;
il momento flettente è positivo se l’azione tende le fibre inferiori della trave 

F

+

.
G
Asse longitudinale 

sezione

x
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E’ possibile tradurre in forma analitica e grafica le caratteristiche di sollecitazione interna.
Prendendo ad esempio la seguente struttura: 

a. decidere un verso di percorrenza dell’oggetto, per esempio da A a B. 

b. eliminare una parte della struttura.

c. Ovviamente bisogna porre qualcosa in sostituzione della parte di struttura che viene 
eliminata, in quanto non sussiste più l’equilibrio; e qui entrano in gioco le caratteristiche 
di sollecitazione interna. 

N
T

M.o

F

F
2

F
2

l/2 l/2

A B 

F

F
2

F
2

A B

F
2

A

x

F
2

A

x

Tutto ciò funziona fintantoché la sezione non incontra la forza applicata F, quindi: 
0 x l/2

N  N = 0
 nel sistema non è applicata nessuna forza che produca azioni di trazione o compressione. 

T  T – F/2 = 0  T = F/2

M o  M – F/2*x = 0  M = F/2x
per x = 0  M = 0 

per x = l/2  M = Fl/4

d. continuare l’analisi per la restante parte della struttura.
N.b. vanno eseguite tante sezioni quante sono le parti di struttura divise da applicazioni di forze; in 
questo caso le sezioni significative sono due.

l/2 x l

N  N = 0

T  T – F/2 + F = 0  T = –F/2
 una forza concentrata fa saltare il taglio dell’entità della forza stessa. 

M o  M – F/2*(x + l/2) + F*x = 0

per x = 0  M = Fl/4

per x = l  M = 0 

N
T

M.o

F
2

A
F

l/2 x
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e. riassumere graficamente. 

F

F
2

F
2

l/2 l/2

A B 

N
N=0 N=0

T

M

+

–
F/2

F/2

Fl/4+

Scegliendo il verso di percorrenza opposto i risultati non cambiano, ma per iniziare l’analisi è 
necessario girare considerare l’altro lato del concio. 

0 x l/2

N  N = 0

T  T + F/2 = 0  T = –F/2

Mo  M – F/2*x = 0  M = F/2x
per x = 0  M = 0 

per x = l/2  M = Fl/4

_Rotazione del concio di convenzione positiva nelle strutture.

N
T

M . o

F
2

B

x
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_Esercizio n.10

Hi = 0
H – F = 0   H = F

Vi = 0 
V = 0 

Mi = 0 
M – F*l /2 = 0   M = Fl/2

sezione 01
0 x l

N  N + F = 0  N = –F

T  T = 0 

Mo  M + Fl/2 = 0  M = – Fl/2

–

–

l

l

F

l/2

F

l/2

l
FF

l/2
F

Fl/2

F

Fl/2

N

T

M

F

Fl/2

x

F

Fl/2
N

T

M.o BA

BA

BA

C

C

C

A

+

F
T=0

N=0

–

Fl/2

Considerazioni
Ricordare sempre di ruotare il concio di 
convenzione positiva nel modo giusto (vedi
schematizzazione sovrastante). 

sezione 02
0 x l/2

N  N = 0 

T  T – F = 0  T = F

Mo  M + Fx = 0  M = – Fx
per x = 0  M = 0 

per x = l/2  M = –Fl/2

N

T
M

.
o

F

x
C
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_Esercizio n.11

Hi = 0
HA – F/ 2 = 0   HA = F/ 2

Vi = 0 
VA – F/ 2 + VD = 0

MA = 0 
M – F/ 2*3l/2 – F/ 2*l/2 + VD*2l = 0

 M = 2Fl/ 2 – 2VDl
 VD = F/ 2
 VA = 0 

Lp1 valida da D a C 
Lp2 valida da C ad A 

sezione 01
0 x l

N  N + F/ 2 = 0  N = –F/ 2

T  T = 0 

M o  M = 0

A

x

F/ 2

l

F
45°

A B

l/2 l/2

l/2

l

F

A

l/2 l/2

Lp2

Lp1
RA

RD

l

A

l/2 l/2

l/2

l/2

F/ 2

F/ 2

l/2

l/2

F/ 2

F/ 2

D

B

D

B

D

C

C

C

N
T

M.o

sezione 02
0 x l 2/2

N  N + F/2 = 0  N = –F/2

T  T + F/2 = 0  T = –F/2

Mo  M – F/2*x = 0  M = Fx/2

per x = 0  M = 0 

per x = l 2/2  M = Fl 2/4

sezione 03
0 x l 2/2

N  N + F/2 = 0  N = –F/2

T  T + F/2 – F = 0  T = F/2

Mo  M – F/2*(x + l 2/2) + Fx = 0 

per x = 0  M = Fl 2/4          per x = l 2/2  M = 0 

l

F
45°

A B

l/2 l/2

l/2
D

F/ 2

F/ 2

C

l/2

T=0

M=0

–

+

–

–

+

N

T

M

N

T

M

.
o

x

F/2

D
F/2

F/2
F/ 2

N

T

M

.
o

F/2

D

F/2

F

C

l 2/2

F/ 2

F/2

F/2

F/2

Fl 2/4

F/2

x
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_Rapporti fra taglio, momento e linee delle pressioni.

È possibile tracciare intuitivamente il grafico del momento flettente a partire dalla linea delle 
pressioni, sapendo che: 

a. nei punti di intersezione o identità fra linea delle pressioni e struttura il momento è zero. 
b. in caso di parallelismo fra struttura e linea delle pressioni, il momento sarà una 

costante.
c. più è grande la distanza  fra la linea delle pressioni e la struttura, più si verificherà 

momento.
d. se la linea delle pressioni è di compressione, il momento è situato all’opposto di essa 

rispetto all’asse della trave; se di trazione, il momento è situato dallo stesso lato della 
linea delle pressioni. 

Ad esempio, nel precedente esercizio: 
- fra A e B la Lp2 coincide con la struttura  il momento sarà zero nel tratto di 

coincidenza. 
- in D la Lp1 interseca la struttura  il momento sarà zero nel punto di intersezione. 
- fra B e C la Lp2 si allontana dalla struttura  il momento, partendo da zero, andrà via 

via aumentando fino a C.
- fra C e D è valida la Lp1, e si avvicina alla struttura  il momento, partendo dal suo 

massimo in C, andrà via via diminuendo fino a zero in D.
- Le linee Lp1 ed Lp2 sono di compressione, quindi il momento sarà disegnato dal lato 

opposto ad esse, con asse la struttura. 

Inoltre, il diagramma del taglio è la 
derivata del diagramma del momento. 
Da ciò si può dedurre: 

- se il taglio è zero in un tratto, il 
momento sarà costante o zero. 

- se il taglio è costante, il mo-
mento sarà un’inclinata; il taglio 
in questo caso è il coefficiente 
angolare del momento. 

- se il taglio è un’inclinata, il mo-
mento sarà parabolico; e così 
via.

- se il taglio è zero in un punto, il 
momento avrà un massimo, un 
minimo od un flesso, come 
matematica insegna. 

Per conferma di quanto detto, vedere 
l’esempio precedente. 

+

Lp2

Lp1

B

D

C

A

F/ 2

F/ 2
F

Lp2

Lp1

B

D

C

A

F/ 2

F/ 2
F

N.b. il taglio è una caratteristica di tipo forza, e quindi salta quando incontra forze applicate; il
momento, di conseguenza, salta incontrando una coppia applicata.

 il taglio non percepisce la coppia 
 il coefficiente angolare nel momento è uguale, come si desume dal diagramma di taglio, 

ma il diagramma di momento salta in corrispondenza della coppia. 

N
N=0 N=0

T

M

– Cl/2

C

RA

Cl/2

l/2 l/2

A B 
C

RB

Cl/2

–

+
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_Esercizio n.12

Hi = 0
H = 0 

Vi = 0 
V – ql = 0   V = ql

Mi = 0 
M – ql*3l/2 = 0  M = 3ql²/2

sezione 01
0 x  2l

N  N = 0 

T  T – ql = 0  T = ql

M o  M + 3ql²/2 – ql*x = 0

per x = 0  M = –3ql²/2

per x = 3/2l  M = 3ql²/2 – 3ql²/2 = 0  M = 0 

per x = 2l  M = 3ql²/2 – 2ql² = 0  M = ql²/2

l

q

3ql²/2

ql

l

l

l/2l

l
ql

l/2

l

q

l

l

3ql²/2

ql
N

T

M.o

3ql²/2

ql

x

sezione 02
0 x l

N  N – ql = 0  N = ql

T  T = 0

M o  M + 3ql²/2 – ql*2l = 0
 M = ql²/2

sezione 03
0 x l

N  N = 0 

T  T + qx = 0  T = –qx
per x = 0  T = 0 

per x = l  T = –ql

M o  M – qx*x/2 = 0

per x = 0  M = 0 

per x = l  M = ql²/2

+

. N
T

M
o

N

T
M

.o

q

l

l

3ql²/2

ql

ll

x

3ql²/2

ql

l/2 l/2

+

N=0

N=0

+

T=0

q

–

x

–

+

N

T

M

ql

ql

ql

3ql²/2

ql²/2
ql²/2

ql²/2+
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_Momento, taglio e sforzo normale
in termini differenziali.

Prendendo una piccola parte di carico dx, si nota 
che il carico è variabile, ma la porzione conside-
rata è tanto piccola da essere costante.

Da A a B ci si sposta di dx, e di conseguenza le 
azioni non sono uguali; quindi viene applicato un 
piccolo incremento d.

Dopo aver individuato le risultanti della piccola 
porzione di carico obliquo preso in considera-
zione, è possibile calcolare l’equilibrio del concio. 

N  N – qh*dx + N + dN = 0 qh = (derivata N)

T  T – qv*dx – (T + dT) = 0  – qv*dx – dT = 0 qh = (derivata T)

Mo  – T*dx – M + qv*dx²/2 + M + dM = 0        = T (derivata M)

 M =  T

N.b. dx²/2 è un infinitesimo di ordine superiore,  
trascurabile rispetto agli altri termini dell’equazione.

A B 

dx

N
T

M
N

T

M

dxA B 

N+dN
T+dT

M+dM
N

T

M

dxA B 

dxA B 

qv
qh

dN
dx

dT
dx

N+dN
T+dT

N
T

M

dxA B 

.o

dM
dx

M+dM

_Esercizio n.13

Hi = 0
H = 0 

Vi = 0 
Va + Vb – ql = 0 

MA = 0 
M – ql*l/2 + Vb*l = 0 

 VB = ql/2
 VA = ql/2

sezione 01
0 x l

N  N = 0 

T  T – ql/2 + qx = 0

per x = 0  T = ql/2

per x = l/2  T = ql/2 – ql/2  T = 0 

per x = l  T = ql/2 – ql  T = – ql/2

Mo  M – ql/2*x + qx*x/2 = 0 

per x = 0  M = 0 

per x = l/2  M = ql²/4 – ql²/8  M = ql²/8

per x = l  M = ql²/2– ql²/2  M = 0 

+

–

l

A B 

A B 

q

l/2

ql

ql/2 ql/2

l

A B 
q

ql/2 ql/2

N

T

M

N=0 N=0

+

x

A
q

ql/2

.
T

M
o

ql/2

ql/2

ql²/8

l/2
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_La cerniera interna. 

Trattasi di un particolare vincolo che, come la normale 
cerniera, non può trasmettere momento. 

Ogni trave ha tre gradi di libertà; la cerniera interna è un 
vincolo doppio, ed impedisce due gradi di libertà. Due travi 
posseggono sei gradi di libertà, e vincolate con tre vincoli 
cerniera, impedenti ognuno due gradi di libertà, formano 
una struttura isostatica (a fianco). 

La cerniera interna è comunque mobile. 

È evidente che non si posseggono sufficienti dati noti per 
la soluzione del problema (troppe incognite) è neces-
sario scrivere un’equazione ausiliaria di equilibrio del 
momento, calcolando nel punto di cerniera interna (B); tale 
equazione è relativa al troncone t1 o t2 della struttura  i 
due tronconi possono essere calcolati separatamente, 
ponendo che in B i momenti dei medesimi sono nulli.

La linea delle pressioni deve passare per le cerniere, 
poiché è noto a priori che in tali punti non si verifica 
momento.

Da B a D non sono presenti carichi, quindi la Lp1 deve 
essere regolata dalla reazione di D, e passare per la 
cerniera in D e la cerniera interna in B. 

Tracciare la linea d’azione di F; prolungando dall’interse-
zione con la Lp1 in A si individua la Lp2.

l

h/2

A D

B C

F
h/2

l

h/2

A D

C

F
h/2

Lp2 Lp1

RA RD

B

l

A D

B C

F

h/2

h/2

HA

VA

HD

VD

t1

t2

Hi = 0
F – HA – HD = 0 

Vi = 0 
VA – VD = 0  VA = VD

MA = 0 
M – F*h/2 + VD*l = 0

 VD = Fh /2l
 VA = Fh /2l

 le equazioni, come previsto, non sono sufficienti alla 
risoluzione del problema.  si ricorre all’equazione 
ausiliaria. 

MB (cerniera interna) = 0 
parte sinistra della struttura t1

N.b. scegliere nell’analisi sempre la parte di struttura che è utile ai 
fini del calcolo, e cioè dove si trovano forze applicate note. 

M + F*h/2 – HA*h = 0 
 HA = F/2
 HB = F/2

N.b. VA e VB formano una coppia positiva di valore Fh /2l*l = Fh /2, 
controbilanciata dalla coppia che formano le reazioni HA + HD con la forza F 
pari a F*h /2 = Fh /2, negativa  situazione di equilibrio. 

l

A D

B C

F

h/2

h/2

HA

VA

VD

HD

l

A D

B C

F

h/2

h/2

HA

VA

t1

VA

VD F

HA + HD

l

A D

B C

F

h/2

h/2

F/2
Fh/2l

F/2

Fh/2l
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sezione 01
0 x h/2

N  N – Fh/2l = 0  N = Fh/2l

T  T – F/2 = 0  T = F/2

Mo  M – F/2*x = 0  M = Fx/2

per x = 0  M = 0 

per x = h/2   M = Fh/4

sezione 02
0 x h/2

N  N – Fh/2l = 0  N = Fh/2l

T  T – F/2 + F = 0  T = –F/2

Mo  M – F/2*(x + h/2) + F*x = 0

per x = 0  M = Fh/4

per x = h/2   M = – Fh/4 – Fh/4 + Fh/2  M = 0 

+

–
–

N

T
M

.
o x

l

h/2

A D

B C

F
h/2

A
F/2

Fh/2l

F/2 Fh/2l F/2
Fh/2l

N

T
M

.
o

h/2
A

F/2

Fh/2l
F

x

–

–

+

–

–

+

+

F/2

Fh/2lFh/2l

F/2F/2 F/2

Fh/2l

Fh/2

Fh/4

N

T

M

sezione 03
0 x h

N  N + Fh/2l = 0  N = –Fh/2l

T  T – F/2 + F = 0  T = F/2

Mo  M + F/2*x = 0

per x = 0  M = 0 

per x = h  M = –Fh/2

sezione 04
0 x l

N  N + F/2 = 0  N = –F/2

T  T + Fh/2l = 0  T = –Fh/2l

Mo  M + F/2*h – Fh/2l*x = 0

per x = 0  M = –Fh/2

per x = l  M = – Fh/2 + Fh/2  M = 0

N
T

M . o

D
F/2

Fh/2l

x

N

T
M

.
o

x

h/2

D

C

h/2

Fh/2l F/2
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_Esercizio n.14

Hi = 0
HA + HD – ql/2 = 0

Vi = 0 
VA – VD = 0  VA = VD

MA = 0 
M + ql/2*3l/4 – VD*2l = 0

 M = – 3ql²/8 + 2VDl
 VD = 3ql/16
 VA = 3ql/16

MC = 0 
parte destra della struttura rispetto a C
M – ql/2*l/4 + HD*l = 0

 M = ql²/8 – HDl
 HD = ql/8
 HA = ql/2 – ql/8  HA = 3ql/8

Lp1 valida da D a ql/2
Lp2 valida da ql/2 ad A 

l

A D

l

B C

q

l/2

l/2

l

A D

l

B C

ql/2
l/2

l/2
Lp2

Lp1

RA
RD

A D

B C

q

l/2

l/2

HA VA

VD

HD

A D

B C

q

l/2

l/2
3ql/8

3ql/16

3ql/16

ql/8

l l

l l

ql/2
RD RA

sezione 01
0 x l 2

N  N + 9ql/16 2 = 0  N = –9ql/16 2

T  T + 3ql/16 2 = 0  T = –3ql/16 2

M o  M + 3ql/16 2*x = 0

per x = 0  M = 0 

per x = l 2  M = –3ql²/16

N

T

M

.o

x

A
3ql/16 2

9ql/16 2

l

A D

l

B C

q

l/2

l/2
3ql/8

3ql/16

3ql/16

ql/8

+

+

+

+
–

–

–

–

–
–

ql

3ql/16

3ql/8

3ql²/16

9ql²/128

3ql/16 2

9ql/16 2

3ql²/16

ql/8

N

T

M
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sezione 02
0 x l

N  N + 3ql/8 = 0  N = –3ql/8

T  T – 3ql/8 = 0  T = 3ql/8

M o  M – 3ql/16*(x + l) + 3ql/8*l = 0 

per x = 0  M = –3ql²/16

per x = l  M = 3ql²/16 + 3ql²/16 – 3ql²/8   M = 0 

sezione 03
0 x l/2

N  N – 3ql/16 = 0  N = 3ql/16

T  T + ql/8 = 0  T = – ql/8

Mo  M – ql/8*x = 0

per x = 0  M = 0 

per x = l/2  M = ql²/16

l

A

B

3ql/8
3ql/16

x

N
T

M.o

l

D
x

N

T
M

.
o

3ql/16

ql/8

sezione 04
0 x l/2

N  N – 3ql/16 = 0  N = 3ql/16

T  T + ql/8 – qx= 0 

per x = 0  T = –ql/8

per x = l/2  T = 3ql/8

per x = l/8  T = 0

Mo  M – ql/8*(l/2 + x) + qx*x/2 = 0

per x = 0  M = ql²/16

per x = l/2  M = ql²/16 + ql²/16 – ql²/8  M = 0 

per x = l/8  M = ql²/16 + ql²/64 – ql²/128  M = 9ql²/128 (massimo)

D

x

N

T
M

.
o

3ql/16

ql/8

l/2
q
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_Esercizio n.15

Hi = 0
ql – HA – HH = 0

Vi = 0 
VH – VA = 0  VA = VH

MH = 0 
M + ql*l/2 + VA*3l – HA*l = 0

 3VA = HA – ql/2
 VA = HA/3 – ql/6

MD = 0 
parte sinistra della struttura rispetto a D
M + ql*3l/2 – HA*2l + VA*2l = 0

 M + ql*3l/2 – HA*2l + (HA/3 – ql/6)*2l = 0 
 M + 3ql²/2 – 2HAl + 2HAl/3 – ql²/3 = 0 
 M – 4HAl/3 + 7ql²/6 = 0 
 4HA/3 = 7ql²/6  HA = 7ql/8

 HH = ql – 7ql/8  HH = ql/8
 VA = 7ql/24 – ql/6  VA = ql/8
 VH = ql/8

Lp1 valida da D a ql
Lp2 valida da ql ad A 

l

A

H

l

C

q l

l

Lp2

Lp1

ql
RD RA

RA

RD

HA

VA

VH
HH

B

D E F 

G

l l l

l

A

H

l

C

l

l
B

D E F 

G

l l l

ql

l

A

H

l

C

l

l
B

D E F 

G

l l l

q

7ql/8

ql/8 ql/8

l

A

H

l

C

l

l
B

D E F 

G

l l l

q

ql/8

sezione 01
0 x l

N  N – ql/8 = 0  N = ql/8

T  T – 7ql/8 + qx = 0 

per x = 0  T = 7ql/8

per x = l  T = –ql/8

per x = 7l/8  T = 0

Mo  M – 7ql/8*x + qx*x/2 = 0

per x = 0  M = 0 

per x = l
M = 7ql²/8 – ql²/2  M = 3ql²/8

per x = 7l/8
M = 49ql²/64 – 49ql²/128   

 M = 49ql²/128 (massimo)

x

N

T
M

.
o

q A

ql/8
7ql/8

3ql²/8

l

H

l

C

q l

l
B

D E F 

G

l l l

7ql/8

ql/8 ql/8

A

ql/8

N

T

M

N=0

+

+

+

+

–

–

–

–

–

–

+

+

+

N=0

T=0

M=0

ql/8

ql/8

ql/4 2

ql/8ql/8

ql/8

ql/8

7ql/8

ql/8

ql/8

ql²/4

49ql²/128

ql²/8

ql²/8
ql²/8
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sezione 02
0 x l 2

N  N + ql/ 2 – ql/ 2 = 0  N = 0 

T  T + ql/ 2 – 3ql/4 2 = 0  T = –ql/4 2

M o  M – ql/ 2*l/ 2 + ql/ 2*l/2 2 + ql/ 2*(l/2 2 + x) – 3ql/4 2*(l/ 2 + x) = 0 

per x = 0  M = ql²/2 – ql²/4 – ql²/4 + 3ql²/8  M = 3ql²/8

per x = l 2  M = ql²/2 – ql²/4 – ql²/4 – ql² + 3ql²/8 + 3ql²/4  M = ql²/8

sezione 03
0 x l

N  N – 7ql/8 + ql = 0  N = –ql/8

T  T + ql/8 = 0  T = –ql/8

M o  M + ql/*3l/2 – 7ql/8*2l + ql/8*(x + l) = 0

per x = 0  M = – 3ql²/2 + 7ql²/4 – ql²/8  M = ql²/8

per x = l  M = – 3ql²/2 + 7ql²/4 – ql²/8 – ql²/8  M = 0 

q

B

3ql/4 2A

ql/ 2

N

T

M

.
x

o
ql/ 2

ql/ 2

C

q

B

7ql/8A

ql/8

N
T

M.o

l x

l

l

l/ 2 sezione 04
0 x l

N  N – ql/8 = 0  N = ql/8

T  T – ql/8 = 0  T = ql/8

M o  M + ql/8*x = 0

per x = 0  M = 0 

per x = l  M = –ql²/8

sezione 05
0 x l

N  N + ql/8 = 0  N = – ql/8

T  T – ql/8 = 0  T = ql/8

Mo  M + ql/8*l + ql/8*x = 0

per x = 0  M = –ql²/8

per x = l  M = –ql²/4

sezione 06
0 x  2l

N  N + ql/8 = 0  N = –ql/8

T  T + ql/8 = 0  T = –ql/8 

Mo  M + ql/8*l + ql/8*(l – x) = 0

per x = 0  M = –ql²/4

per x = l  M = –ql²/8

per x = 2l  M = 0

x

H

ql/8 ql/8
. N

T

M
o

x

H G

ql/8 ql/8

N

T
M

.
o

l

N
T

M . o

H
l

E

G

ql/8 ql/8

x

F

l
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_Esercizio n.16

Hi = 0
ql – HE = 0   HE = ql

Vi = 0 
VA – VE = 0   VA = VE

MC = 0 
M + ql*l/2 – VA*l = 0

 VA = ql/2
 VE = ql/2

ME = 0 
ME – ql*l/2 – VA*l = 0

 ME = ql*l/2 + ql/2*3l
 ME = 2ql²

Lp1 valida da A a ql
Lp2 valida da ql ad E 

A

C D 

E
B

l l l

q

l

A

C D 

E
B

l l l

l

Lp2Lp1

RA RE

RA

RE

2ql

ME

ql

A

C D 

EB

l l l

q

l

ME

VA
HE

VE

sezione 01
0 x l

N  N = 0 

T  T – ql/2 = 0  T = ql/2

M o  M – ql/2*x = 0

per x = 0  M = 0 

per x = l  M = ql²/2

A

C D 

EB

l l l

q

l

2ql²
ql/2 ql

ql/2
N

T

M.o

x

A

ql/2

+

+

+

–

––

–

+

+

+

N=0

3ql/2 2

ql²/2

ql/2

ql/2 ql/2 2

ql

ql

ql/2 +

ql²/2

2ql²

ql²/2

N

T

M



CARATTERISTICHE DI SOLLECITAZIONE

33

sezione 02
0 x l

N  N + ql/2 = 0  N = –ql/2

T  T + qx = 0 

per x = 0  T = 0 

per x = l  T = –ql

Mo  M – ql/2*l + qx*x/2 = 0

per x = 0  M = ql²/2

per x = l  M = ql²/2 – ql²/2  M = 0 

sezione 03
0 x l 2

N  N + ql/2 2 = 0  N = –ql/2 2

T  T – 3ql/2 2 = 0  T = 3ql/2 2

Mo  M + 3ql/2 2*x – 2ql² = 0

per x = 0  M = 2ql²

per x = l 2  M = 2ql² – 3ql²/2  M = ql²/2

x

N

T
M

.
o

q B
A

ql/2

. o

N

T

M x

3ql/2 2

ql/2 2
E

2ql²

sezione 04
0 x l

N  N + ql = 0  N = –ql

T  T – ql/2 = 0  T = ql/2

Mo  M + ql*l + ql/2*(l + x) – 2ql² = 0

per x = 0  M = 2ql² – ql² – ql²/2   M = ql²/2

per x = l  M = 2ql² – ql² – ql²/2 – ql²/2   M = 0 

N T

M . o D

x

E

l

2ql²

ql

ql/2

l
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_Esercizio n.17

Hi = 0
HH – HA = 0  HA = HH

N.b. graficamente è possibile intuire 
il valore di VH  la Lp1 ha un’inclinazione 
di 45°, quindi le componenti di RA devono essere
di uguale modulo VH = HH

Vi = 0 
VA – 2ql – VH = 0 

MH = 0 
M + 2ql*5l – VA*4l + HA*2l = 0

 2HA = 4VA – 10ql
 HA = 2VA – 5ql

ME = 0 
parte sinistra della struttura rispetto a E
M + 2ql*2l – HA*l – VA*l = 0

 M + 2ql*2l – (2VA – 5ql)*l – VA*l = 0
 4ql – 2VA + 5ql – VA = 0
 3VA = 9ql  VA = 3ql

 VH = 3ql – 2ql
 VH = ql

 HA = 2(3ql) – 5ql
 HA = ql
 HH = ql

Lp1 valida da H a 2ql
Lp2 valida da 2ql ad A 

2l

A

C
l

l
B

D

E

F

H

G

2l

2lll

q

2l

A

C
l

l
B

D

E

F

H

G

2l

2lll

RA

RH

RA

RH

2ql2ql

2l

A

C
l

l
B

D

E

F

H

G

2l

2lll

q

HA

VA
VH

HH

Lp2 Lp1 

sezione 01
0 x  2l

N  N + ql = 0  N = – ql

T  T + 3ql = 0  T = – 3ql

Mo  M + 3ql*x = 0

 M = – 3qlx
per x = 0  M = 0 

per x = 2l  M = – 6ql²

N T

M . o

x

A
ql

3ql
2l

A

C
l

l
B

D

E

F

H

G

2l

2lll

q

ql

3ql ql
ql

+

+

+

+

–

–

–

–

+

+

+

–

–

+

+

+

N=0

T=0

M=0

6ql²

N

T

M

ql

ql

ql 2

ql

3ql

ql

ql

3ql

4ql²

2ql²

ql

ql 2

3ql

ql

2ql²

4ql²

4ql²
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sezione 02
0 x  2l

N  N + 3ql = 0  N = – 3ql

T  T – ql = 0  T = ql

Mo  M + 3ql*2l – ql*x = 0

per x = 0  M = – 6ql²

per x = 2l  M = – 4ql²

sezione 03
0 x  2l

N  N + ql = 0  N = – ql

T  T – 3ql + qx = 0

per x = 0  T = 3ql

per x = 2l  T = 3ql – 2ql  T = ql

Mo  M – ql*2l + 3ql*(2l – x) + qx*x/2 = 0 

per x = 0  M = 4ql

per x = 2l  M = 2ql² + 6ql² – 6ql² – 2ql²  M = 0 

N

T
M

.
o

2l

AB

3ql

ql

x

. N
T

M
o

2l

A

C

B

q

ql

3ql

2l

x

sezione 04
0 x l 2

N  N + ql 2 – 2ql 2 = 0  N = ql 2

T  T + ql 2 – ql 2 = 0  T = 0

M o  M + ql 2*l/ 2 – 2ql 2*l 2 + ql 2*(l 2 – x) + ql 2*(l/ 2 + x) = 0

per x = 0  M = – ql² + 4ql² – 2ql² – ql²  M = 0 

per x = l 2  M = – ql² + 4ql² – 2ql² + 2ql² – ql² – 2ql²  M = 0 

sezione 05
0 x  4l

N  N – ql = 0  N = ql

T  T + ql = 0  T = – ql

Mo  M – ql*x = 0

per x = 0  M = 0 

per x = 4l  M = 4ql²

N

T
M

.
o

l

A

C

B

D

2ql 2ql 2

N
T

M

x

2l

ql 2 ql 2

l

H

x
ql
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sezione 06
0 x  2l

N  N – ql = 0  N = ql

T  T – ql = 0  T = ql

Mo  M – ql*4l + ql*x = 0

per x = 0  M = 4ql²

per x = 2l  M = 2ql²

sezione 07
0 x l 2

N  N = 0 

T  T – ql 2 = 0  T = ql 2

Mo  M – ql 2*(l 2 – x) = 0

per x = 0  M = 2ql²

per x = l 2  M = 0 

N T

M . o

l

l

H

G

2l

ql

ql

x

l

l

F

H

G

2l

2l

. o

N
T

M

x

ql 2

_Verifica mediante l’equilibrio globale alla rotazione. 

È molto utile eseguire anche l’equilibrio globale alla rotazione della struttura, in verifica finale 
dei calcoli trascritti nel diagramma di corpo libero. 

 eventualmente, è possi-
bile scomporre forze e rea-
zioni, in modo da ottenere 
coppie formate da forze di 
eguale modulo. 

Mi = 0
M – ql*4l + ql*2l + 2ql*l = 0  M = 0  la struttura è in equilibrio alla rotazione.
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A.4
STRUTTURE RETICOLARI

Le strutture reticolari sono strutture formate da aste rettilinee, connesse agli estremi attraverso 
nodi cerniera. Tali strutture possono essere sia spaziali sia piane. 
Il punto di incontro di due o più aste nel quale non viene trasmesso momento è chiamato nodo
cerniera.

Assunti di calcolo da adottare per strutture reticolari piane:
- reticolare con aste interconnesse da cerniere perfette (metodo che non sarà affrontato; 

la cerniera perfetta equivale ad una cerniera normale in cui M = 0, tenendo conto che 
in casi particolari le cerniere trasmettono momento). 

- reticolare con carichi esterni applicati ai nodi cerniera tutte le aste sono soggette
solo a sforzo normale, costante lungo tutta la lunghezza dell’asta.  le aste possono 
quindi anche essere dette bielle.

nodo cerniera

asta rettilinea 

N N

=

P
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_Tipi di strutture reticolari. 

- Reticolare Polonceau 

- Reticolare Inglese 

- Reticolare Mohniè 

- Reticolare Neville 

_Concetti preliminari per il calcolo. 

a. individuare le reazioni vincolari esterne  
b. trovare gli sforzi normali su tutte le aste 

 si inizia numerando i nodi e le aste (es. nodi con numero arabo cerchiato, aste con numero 
arabo non cerchiato), e successivamente si conteggiano i gradi di vincolo esterno. 

NN (numero nodi) : 6 

NA (numero aste) : 9 

NV (numero gradi di vincolo) : 3 
 due dalla cerniera, uno dall’appoggio 

le incognite sono lo sforzo normale N sulle aste e le reazioni vincolari.  ogni nodo 
fornisce due equazioni di equilibrio; le equazioni complessive sono quindi due volte il numero 
dei nodi.

equazioni = 2 NN

incognite = NA + NV

una struttura reticolare piana è risolvibile quando: 
2 NN = NA + NV

o meglio, riassumendo in un coefficiente g:
g = 2 NN – NA – NV

g > 0  2 NN > NA + NV  struttura labile
g = 0  2 NN = NA + NV  struttura isostatica
g < 0  2 NN < NA + NV  struttura iperstatica

quindi, la struttura di partenza 
NN = 6 NA = 9 NV = 3  12 = 12, g = 0 è una reticolare isostatica.

6

321

5 5

73

21

8 9 

4 5 6 

P

l

l l
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_Metodo di calcolo dell’equilibrio ai nodi. 

a. calcolare le reazioni vincolari. 
b. scrivere per ogni nodo due equazioni di equilibrio, una alla traslazione orizzontale ed 

una alla verticale. 
c. le incognite delle suddette equazioni sono gli sforzi normali su tutte le aste.  

N.b. è indispensabile non avere più di due incognite per nodo, e gli equilibri fatti agli 
ultimi due nodi permettono di verificare se i precedenti calcoli sono esatti  delle 
quattro equazioni che vengono scritte, tre sono di controllo poiché le reazioni sono già 
note dagli altri calcoli. 

-esempio pratico- 

a. calcolare le reazioni vincolari. 

Hi = 0
H = 0 

Vi = 0 
V   – P – V    = 0 

M    = 0 
M – V   *l + P*l = 0 

 V   = P
 V   = 2P

NN = 6 
NA = 9 
NV = 3 

b. per il calcolo si parte da un nodo cerniera che comprende due sole aste, per il quale vanno
    scritte due sole equazioni.  nell’esempio è possibile partire dal nodo       o dal nodo      . 

3

21

5 4

2

1

6 7 

5 4 3 

P

l

l l

1 2

1

2

1

2

3

21

5 4

2

1

6 7 

5 4 3 

P

l

l l

V   = 2P V   = P21

2 5

Convenzione: se lo sforzo normale N su un’asta è incognito, esso è sempre uscente dal nodo. 

c. scrivere le equazioni di equilibrio, una alla traslazione orizzontale una alla verticale. 

E.O. N6 + N5/ 2 = 0 N6 = – N5/ 2 N6 = P 

E.V.    – P – N5/ 2 = 0 N5 = – P 2

d. ripetere tale operazione per il resto dei nodi. 
Convenzione: se lo sforzo normale su di un’asta è noto e positivo si indica uscente dal nodo, 
se noto e negativo entrante nel nodo.

E.O. N7 – P = 0 N7 = P 

E.V.    – N4 = 0 N4 = 0 

E.O.    – P – N3/ 2 = 0 N3 = – P 2

E.V.    – N2  – N3/ 2 = 0 N2 = P 

N5

N65

P

N7

N4

4N6 = P

N3

3

N2

N7 = P
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E.O.    – N1 = 0 N1 = 0 

E.V.    – P + N2 = 0 N2 = P 
(prima equazione di verifica) 

E.O.    – P + P + N1 = 0 N1 = 0 
(seconda equazione di verifica) 

E.V.    – P – P + 2P + N4 = 0 N4 = 0 
(terza equazione di verifica) 

Riassumendo il percorso eseguito: 

e. redigere una tabella riassuntiva dei risultati ottenuti. 
N.b. se un’asta ha sforzo normale positivo è detta tirante, se negativo puntone, se zero asta
scarica.

asta valore N tipo asta 
1 0 scarica
2 P tirante
3 – P 2 puntone
4 0 scarica
5 – P 2 puntone
6 P tirante
7 P tirante

N5
N6

N7
N4

N2
N3

N1
verifica

verifica
verifica

2

N2 =P 

N1

P

1

N4 = 0 

N1 = 0 

2P

N3 = – P 2N3 = – P 2

5 4 3 2 1

f. come ultima operazione, segnalare i risultati ottenuti nella struttura di partenza. 

puntone

tirante

asta scarica 

_Metodo di calcolo delle sezioni di Ritter.

Tale metodo permette di calcolare gli sforzi normali in una struttura reticolare note le reazioni 
vincolari. Si basa sul teorema fondamentale della statica secondo il quale “se una struttura è in 
equilibrio lo è ogni sua parte”. 
Chiamasi sezione di Ritter “canonica” una sezione che divide in due parti una struttura 
reticolare, tagliando tre aste non tutte concorrenti nello stesso punto.

-esempio pratico- 

3
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5 4 3 
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a. dividere la struttura in due o più tronconi.
N.b. la sezione deve tagliare né più né meno tre aste, non concorrenti in uno stesso 
nodo.

b. mettere in evidenza le forze interne e gli sforzi normali incogniti lungo le aste.

c. la struttura è in equilibrio in ogni suo punto, quindi è possibile redigere le equazioni di 
equilibrio. Viene utilizzata l’equazione di equilibrio alla rotazione, scegliendo per iniziare 
un nodo che lasci nell’equazione una sola incognita. 

 nel nodo     N1, N3, P hanno con-
tributo nullo nel calcolo del momento; 
l’unica incognita è N5.

? = N5

M parte Dx = 0 
M + N5*l = 0 

N5 = 0 

3

2

1

3

21

4 5 

P

4

P

P

P

1

5

3

3

2

1 21

4 5

P

4

P

P

P

1

5
N5

N3

N1 N1 

N5
N3

33

2 3

2

4

P

1

5

N1

N5

N3 3 l

2

d. proseguire per gli altri sforzi normali incogniti, cambiando di volta in volta nodo. 

N.b. si prende in considerazione un nodo trovato 
all’intersezione delle rette d’azione di N3 ed N5,
coincidente con il nodo       . 

? = N1

M parte Dx = 0 
M – N1*l  – P*l = 0 

N1 = –P

 nel caso degenere in cui le rette d’azione degli sforzi normali siano parallele (calcolo di N3),
si sostituisce l’equazione di equilibrio alla rotazione con una di equilibrio alla traslazione, nella 
direzione perpendicolare alle due rette parallele. 

si considera in questo caso solo una componente
di N3, quella verticale che rientra nel calcolo.

? = N3

V parte Dx = 0 
M + N3/ 2 – P = 0

N3 = P 2

 N.b. il metodo delle sezioni di Ritter non permette di conoscere tutti gli sforzi normali di una 
reticolare  per gli sforzi restanti bisogna ricorrere a sezioni non canoniche o al metodo 
dell’equilibrio ai nodi.  

3

2

4

P

1

5

N1

N5

N3 3 l
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4

21N1
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P
5N5
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B.1
TRAVE INFLESSA

La deformabilità di una struttura dipende dai materiali di cui è composta e dai parametri 
geometrici in gioco. 

Tema di studio è l’oggetto trave, oggetto con una dimen-
sione preponderante rispetto alle due restanti. Il modello 
trave viene identificato come elemento monodimensionale,
rappresentato dall’asse longitudinale della stessa (luogo 
geometrico dei baricentri delle sezioni). 

Nello stesso modo sono state affrontate le caratteristiche di sollecitazione interna (vedi p.18)
 le sezioni trasmettono fra loro le azioni di taglio, momento, sforzo normale. In questo 

capitolo si studieranno le deformazioni indotte da tali sollecitazioni. 

_Deformazione longitudinale. 

Prendendo un concio di ampiezza dz

il medesimo reagisce allo sforzo normale applicato, allungandosi di dz.

dz sarà:
- proporzionale allo sforzo normale N
- inversamente proporzionale all’area della 

sezione A
- dipendente dalla lunghezza dz considerata 
- dipendente dal materiale di cui è composta 

la struttura  modulo elastico E

dz = deformazione assiale.

EA = rigidezza assiale, che ha in sé una caratteristica meccanica (E) ed una geometrica (A).

NN

dzA B 

z
y

dzA B 

dzdz

NN

Ndz

EA

.
G
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Nello sforzo normale dz è inversamente proporzionale all’area 
della sezione perché: 

se la sezione è grande, le sollecitazioni si distribuiscono in piccole forze su 
tutta la sezione; discorso analogo se la sezione è piccola, ma le forze hanno 
minore spazio in cui distribuirsi e quindi la sollecitazione è maggiore 
diviene fondamentale conoscere la sezione dell’oggetto. 

_Deformazione a taglio.

Nel taglio il concio si deforma nel modo illustrato a fianco, ovvero 
le sezioni scorrono reciprocamente e si ingobbano. 

Per semplicità, la vera deformazione viene approssimata, 
lasciando le sezioni lisce. In ogni caso, la deformazione tagliante 
sarà per ora trascurata, poiché viene adottato per lo studio il 
modello di trave di Eulero, che trascura tale deformazione (la 
quale in realtà è estremamente piccola nel caso di travi sottili).

_Deformazione flessionale. 

Nel momento flettente le fibre superiori del concio si comprimono 
e le inferiori si tendono, secondo un arco di circonferenza. Ma gli 
spostamenti sono abbastanza piccoli da poter approssimare, 
confondendo l’arco di circonferenza con la sua tangente. 

        simbologia             realtà           approssimazione 

I due assi su cui giacciono le due sezioni del concio si incontrano 
in un punto, formando l’angolo d ed un raggio di curvatura R.

Si nota che nella definizione di rigidezza vista poc’anzi l’area non 
è sufficiente, poiché la sezione resiste in modo diverso per 
posizione  viene inserito nella formula il momento di inerzia.

EI = rigidezza flessionale.

MM

T

T

dz

dR

d

dz

dV

_Modello di Eulero-Bernouilli e Timoshenko. 

Si prenda ad esempio una trave 
incastrata con una forza P applicata 
sull’estremo libero, ipotizzando che un 
solo concio della struttura sia deforma-
bile.

Alla sollecitazione momento flettente 
M si otterrà un effetto di questo tipo. 

Il taglio T è di minore entità, ha sem-
pre incisività minore  è possibile 
trascurare le deformazioni date dal 
taglio.

 più la trave è sottile, più la deformazione tagliante T è trascurabile rispetto alla flessione M.

travi sottili 

Sono le travi che verranno analizzate in 
questa sede, e seguono il modello di
Eulero-Bernouilli, caratterizzato da: 

- mantenimento delle sezioni; 
- spostamenti piccoli; 
- trascurabilità delle azioni taglianti. 

travi tozze 

Gli effetti di deformazione a taglio e flessio-
nale sono comparabili; tali travi individuano 
il modello di Timoshenko.

P

dV

dV

T

M

dz

d
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B.2
SPOSTAMENTI, ROTAZIONI, CURVATURE

Per disegnare la deformata flessionale di una 
struttura, è necessario conoscere innanzitutto 
le condizioni di cinematica nei vincoli. 

cerniera       appoggio 
u = 0  u  0 
v = 0  v = 0 

 0   0 

Nella deformata reale il carrello resiste sola-
mente agli spostamenti verticali, e quindi 
pattina.

Nella pratica si prende in considerazione 
un’approssimazione, secondo la teoria dei 
piccoli spostamenti  l’appoggio si sposta 
talmente di poco da essere lasciato dov’è, 
ovvero si considera l l0.

V di (z) è detto linea elastica, e rappresenta la 
configurazione deformata per effetto della fles-
sione della trave. 

_Relazione fra momento flettente e deformata flessionale.  

Ingrandendo un pezzo di deformata, tracciare la tangente alla curva trovando l’angolo ,
angolo secondo il quale l’oggetto si deforma.

 N.b. la tangente di una curva in un punto è la derivata della curva in quel punto.  

q

l
configurazione

variata o deformata 

l0
configurazione

indeformata

V(z)

z

y

z

y
z

y
V(z)

V(z)
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Se l’angolo è piccolo, la tangente dell’angolo è confondibile con l’angolo stesso. 

tg

Convenzione: spostamenti positivi generano rotazioni orarie  fra M eV si pone il segno – .

+M – +V

L’angolo d formato dall’intersezione fra le tangenti è la rotazione relativa fra il punto 0 ed il 
punto 1.

d  * R = dz

          =

d dipende da: 
- l’entità del momento flettente M
- l’inerzia del momento I
- il modulo elastico del materiale E

dV
dz

d

R

ds
(vera)

dz
(approssimata)

d
dz

1
R

0

d

d

0

1

ds

d
R

d

dz

0

Riassumendo:

         =  – =            =  – 

N.b. da  – a 1/R si ha a che fare con passaggi ed equazioni cinematiche (compatibilità e 
congruenza con i vincoli), mentre da 1/R a – M/EI si passa dal mondo della cinematica a 
quello della statica.

 la tangente che si considera è ovviamente tangente 
per una famiglia di curve, e non per un’unica curva. 

 scendendo di grado mediante derivazione, la tangen-
te in un punto è una ed una sola. 

_Richiamo agli integrali. 

kzn z  =

 formula generale di integrale definito. Per il calcolo sono utili gli integrali indefiniti, per i 
quali basta aggiungere alla suddetta formula una costante C, che verrà ricavata dalla struttura 
di partenza. 

kzn z  =            + C 

 formula generale di integrale indefinito.

kzn+1

n+1

kzn+1

n+1

dV
dz

d
dz

1
R

M
EI

momento applicato 

rigidezza flessionale

     a 

b

b

a
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_Metodo dell’integrazione della linea elastica. 

Hi = 0   H = 0 
Vi = 0   V – P = 0   V = P 
MA = 0    M – P*l = 0   M = Pl

? = calcolare l’abbassamento in B.
N.b. partendo da destra la z positiva va da destra a sinistra. 

Mz = – P * z

a. cambiare di segno il momento 
EI * d2V/dz2 = dz

b. integrare l’espressione precedente 
EI * dV/dz = Pz2/2 + C1

c. integrare nuovamente 
EI * V = Pz3/6 + C1z + C2

 si ottengono due costanti. Bisogna quindi porre una condizione cinematica che definisca la 
famiglia di curve utile. 
N.b. se il momento è lineare, la rotazione e la linea elasticaV saranno curve.

per z = l V = 0 
per z = l  dV/dz = 0 

 la cinematica enuncia che in A rotazione e spostamento sono nulli, quindi è possibile 
eguagliare l’espressione a zero.

P

l

A B 

P

l

A B 
P

Pl

z
y

P

A B
P

M

z

Pl

- EI V(z = l) = Pl3/6 + C1l + C2 = 0 

- EI dV/dz (z = l) = Pl2/2 + C1 = 0   C1 = – Pl2/2

- EI V(z = l) = Pl3/6 – (Pl2/2)*l + C2 = 0    C2 = Pl3/2 – Pl3/6    C2 = Pl3/3

Sostituendo il tutto: 

EI * dV/dz = Pz2/2 – Pl2/2
EI * V = Pz3/6 – Pl2/2*z + Pl3/3

EI V(z = 0) = Pl3/3 V = Pl3/3EI

Partendo da A, il discorso è il medesimo. 

Mz =  P * z  – Pl

per z = 0  M = – Pl
per z = l  M = 0 

EI * d2V/dz2 = Pl – Pz
EI * dV/dz = Plz – Pz2/2 + C1

EI * V = Plz2/2 – Pz3/6 + C1z + C2

per z = 0 V = 0 
per z = 0  dV/dz = 0 

EI V(z = 0) = C2 = 0    C2 = 0      C1 = 0

EI V(z = l) = Pl3/2 – Pl3/6 = Pl3/3

V = Pl3/3EI

È ora possibile disegnare la deformata della struttura. 

z
y

P

A B
P

M

z

Pl

Pl3/3EI

P
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_Metodo dell’analogia formale di Mohr. 

VZ = linea elastica o abbassamento.

V’Z = Z = rotazione. 

V’’Z = ’Z = 1/R = curvatura. 

1/R = –M/EI    relazione sostitutiva che lega cinematica e statica. 

E’ evidente che le relazioni statiche fra momento, taglio e carico sono in qualche modo 
formalmente analoghe alle relazioni cinematiche fra abbassamento, rotazione e curvatura. 
Mohr individuò appunto questa analogia, disinteressandosi del fatto che da una parte si 
trovano elementi statici (M, T e q) e dall’altra cinematici (V, e 1/R).
Cinematica e statica vengono quindi raffrontate ipotizzando un mondo fittizio, indicato con 
l’asterisco (*).

q(*) (carico fittizio) = 1/R = –M/EI
T(*) (taglio fittizio) = 
M(*) (momento fittizio) = V

a. trovare la rotazione reale equivale a trovare il taglio fittizio della trave  la trave viene 
caricata con il diagramma delle curvature. 

      sistema Reale (sR)

b. è necessario il momento flettente nei suoi valori ed andamento grafico. 
N.b. q(*) è il momento cambiato di segno e diviso per EI  si prende il diagramma di 
momento invertito di segno, e quindi rovesciato. 

q(*) = – M/EI = – Pl/EI

P

l

A B 
P

Pl
–

Pl M

Pl
EI

MZ = momento flettente.

M’Z = TZ = taglio.

M’’Z = T’Z = –q = carico.

c. scrivere le condizioni cinematiche nei vincoli del sistema reale. 
A(incastro):VA = 0; A = 0 
B(estremo libero): VB  0; B  0 

d. nel sistema fittizio bisogna porre dei vincoli analoghi che garantiscano:
A: M(*)

A = 0; T(*)
A = 0 estremo libero

B: M(*)
B  0; T(*)

B  0  incastro

      sistema Reale (sR)                                    sistema Fittizio (sF)

e. applicare il carico fittizio nel sistema fittizio.

f. calcolare taglio fittizio T(*) e momento fittizio M(*) del sistema fittizio. 

R(*) = – Pl/EI * l * 1/2 = – Pl²/2EI

T(*)
B – Pl²/2EI = 0 T(*)

B = Pl²/2EI = B

M(*)
B – Pl²/2EI * 2l/3 = 0 M(*)

B = Pl³/3EI = VB

A B A B 

Pl
EI

A B 

VA = 0 
A = 0

VB  0 
B  0

M(*)
A = 0 

T(*)
A = 0

M(*)
B  0 

T(*)
B  0

A B A B 

l

Pl
EI

A B 

l/3 2l/3

T(*)
B

M(*)
B

R(*)
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g. Studiando le caratteristiche di sollecitazione della struttura fittizia, si ottengono le formule 
generali per risolvere tutta la struttura (vedi p.48, esempio pratico di integrazione della 
linea elastica). 

1/R R(*)
Z = – Pz/EI * z * 1/2 = – Pz²/2EI

Z T(*)
Z = Pl²/2EI – Pz²/2EI

VZ M(*)
Z = Pz²/2EI * z/3 – Pl²/2EI * z + Pl³/3EI

Riassumendo:
a. calcolare il momento flettente nella struttura di partenza, e disegnarne il diagramma; 
b. scrivere le condizioni reali degli spostamenti nei vincoli; 
c. porre nel sistema fittizio dei vincoli che soddisfino, con analogia a tagli e momenti fittizi, 

le condizioni cinematiche del sistema reale; 
d. caricare il sistema fittizio con il diagramma del momento invertito di segno e diviso per 

EI, ottenendo il diagramma delle curvature; 
e. calcolare momenti e tagli fittizi nel sistema fittizio, dove sia necessario, ottenendo 

spostamenti e rotazioni del sistema reale. 

N.b. in ogni caso nella realtà il diagramma delle curvature non corrisponde al diagramma del 
momento flettente, poiché bisogna tener conto della rigidezza flessionale:

      sistema Reale (sR)                                    sistema Fittizio (sF)

 Il diagramma di momento flettente non cambia, ma non bisogna dimenticare che il sistema 
fittizio tiene conto anche della rigidezza flessionale EI  se il rapporto EI è piccolo il 
diagramma si ingrandirà, e viceversa; stesse considerazioni vanno poste se la trave è costituita 
da due materiali diversi, con E1 ed E2.

M(*)
Z

B

z

Pl²/2EI

Pl³/3EI

T(*)
Z

C

C M (sR)+

C/EI

I1 I2 C/EI1 C/EI2

N.b. la linea del diagramma di momento del sistema fittizio, trasportata senza cambi di segno 
nel sistema reale, è la deformata qualitativa di quest’ultimo. 

      sistema Reale (sR)                                    sistema Fittizio (sF)

      momento sR sF caricato 

      deformata sR             momento qualitativo sF
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_Esercizio n.18

? = rotazione in A e B.

Vi = 0   VA – VB = 0   VA = VB

MA = 0    M – C + VB*l = 0
 VA = VB = C/l

sezione 01
0 x l

M o  M + C/l * x = 0 

per x = 0  M = 0 

per x = l  M =  – C 

cinematica sR
A(cerniera): VA = 0; A  0 
B(appoggio): VB = 0; B  0 

vincoli sF
A: M(*)

A = 0; T(*)
A  0 appoggio

B: M(*)
B = 0; T(*)

B  0  cerniera
N.b. il sistema fittizio è identico al reale. 

q(*) = – C/EI
R(*) = – C/EI * l * 1/2  = – Cl/2EI

Vi (sF) = 0
T(*)

A + T(*)
B – Cl/2EI = 0 

MA (sF) = 0
M(*)

A + Cl/2EI * 2l/3 – T(*)
B * l = 0

M(*)
A = T(*)

Bl – Cl²/3EI

 T(*)
B = Cl/3EI = B

T(*)
A = Cl/6EI = A

C
A B 

A

x

M
C/l

C/l

C/l

– C

A B 

C
A B 

l

l

C/EI

A B 

R(*)

l

2l/3 l/3

T(*)
A T(*)

B

M (sR)

N.b. disegnando la deformata 
qualitativa a monte dell’esercizio è 
possibile comprendere anche il 
verso delle rotazioni. 

M (sF)

A B 

BA
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_Esercizio n.19

? = rotazione in A e B.

N.b. il sistema è caricato simmetricamente 
 è possibile studiare la struttura caricata 

con una sola forza e sovrapporre gli effetti. 

Disegnare nel sistema reale la deformata 
qualitativa è utile per intuire verso e segno 
delle rotazioni o degli abbassamenti richie-
sti.

Vi = 0   VA + VB – P = 0 
MA = 0    M – P*l/3 + VB*l = 0
 VB = P/3 
 VA = 2P/3 

sezione 01
0 x l/3

M o  M – 2P/3 *x = 0 

per x = 0  M = 0 

per x = l/3  M = 2Pl/9

cinematica sR
A(cerniera): VA = 0; A  0 
B(appoggio): VB = 0; B  0 

vincoli sF
A: M(*)

A = 0; T(*)
A  0 appoggio

B: M(*)
B = 0; T(*)

B  0  cerniera

A B 
P

l/3

P

l/3l/3

A B 
P

l/3

BA

A B 
P

l/3

2P/3 P/3

x

M
A

2P/3

+2Pl/9 M (sR)

A B 

l/3 2l/3

2l/3

2l/3

2Pl/9EI

q(*) = – 2Pl/9EI

R1(*) = – 2Pl/9EI * l/3 * 1/2  = – Pl²/27EI

R2(*) = – 2Pl/9EI * 2l/3 * 1/2  = – 2Pl²/27EI

Vi (sF) = 0
T(*)

A + T(*)
B – Pl²/27EI – 2Pl²/27EI = 0

MA (sF) = 0
M(*)

A – Pl²/27EI * 2l/9 – 2Pl²/27EI * 5l/9 + T(*)
B * l = 0

M(*)
A = 2Pl³/243EI + 10Pl³/243EI – T(*)

Bl
 T(*)

B = 4Pl²/81EI = B

T(*)
A = Pl²/9EI – 4Pl²/81EI = 0 T(*)

A = 5Pl²/81EI = A

È ora possibile applicare la sovrapposizione degli effetti: 

VB = P/3 + 2P/3 = P 
VA = 2P/3 + P/3 = P 

A B 

2l/9 4l/92l/9

R1(*) R2(*)

T(*)
A T(*)

B

l/9

A B 
P

A B 
P 4Pl²/81EI5Pl²/81EI

5Pl²/81EI4Pl²/81EI

+Pl/3 M (sR)

A B 
P

l/3

P

l/3l/3
+

A B 
P

l/3

P P 

P

A = A1 + A2

A = 5Pl²/81EI + 4Pl²/81EI

A = Pl²/9EI = B
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_Esercizio n.20 

? = rotazione in A e B, abbassamento in l/2.

Vi = 0 
VA + VB – ql = 0 

MA = 0 
M – ql*l/2 + VB*l = 0

 VB = ql/2  VA = ql/2 , Ml/2 = ql²/8

cinematica sR
A(cerniera): VA = 0; A  0 
B(appoggio): VB = 0; B  0 

vincoli sF 
A: M(*)

A = 0; T(*)
A  0 appoggio

B: M(*)
B = 0; T(*)

B  0  cerniera

q(*) = – ql²/8EI

R1(*) = R2(*) = – ql²/8EI * l/2 * 2/3   
 – ql²/24EI

Vi (sF) = 0
T(*)

A + T(*)
B – ql²/24EI – ql²/24EI = 0

MA (sF) = 0
M(*)

A – ql²/24EI * 5l/16 – ql²/24EI * 11l/16 + T(*)
B * l = 0

M(*)
A = 5ql³/384EI + 11ql³/384EI – T(*)

Bl
 T(*)

B = ql²/24EI = B

T(*)
A = ql²/24EI = A

M(*)
l/2 – ql²/24EI * l/2 + ql²/24EI * 3l/16 = 0 

M(*)
l/2 = ql³/48EI – 3ql³/384EI

M(*)
l/2 = 5ql³/384EI = Vl/2

l

A B 
q

ql

l

A B 

ql/2 ql/2

M (sR)
+ ql²/8

BA

l

A B ql²/8EI

A B 

5l/16 5l/163l/16

R1(*) R2(*)

T(*)
A T(*)

B

3l/16

Vl/2

_Esercizio n.21 

? = rotazione in A e B.

Vi = 0   VA + VB – ql/3 = 0 

MA = 0    M – ql/3*l/2 + VB*l = 0
 VB = ql/6
 VA = ql/6

Ml/2 – ql/6*l/2 + ql/6*l/12 = 0 

Ml/2 = 5ql²/72

Ml/3 = ql²/18

cinematica sR
A(cerniera): VA = 0; A  0 
B(appoggio): VB = 0; B  0 

vincoli sF 
A: M(*)

A = 0; T(*)
A  0 appoggio

B: M(*)
B = 0; T(*)

B  0  cerniera

q(*) = – ql²/12EI

R1(*) = – ql²/18EI * l/3 * 1/2 = – ql³/108EI

R2(*) = – ql²/18EI * l/6 = – ql³/108EI

R3(*) = – ql²/72EI * l/9 = – ql³/648EI

T(*)
A = T(*)

B = R1(*) + R2(*)  + R3(*)

T(*)
A = ql³/108EI + ql³/108EI + ql³/648EI

T(*)
A = 13ql³/648EI = A

T(*)
B = 13ql³/648EI = B

l/3 l/3l/3

A B 

ql/3

ql/6

A
q

B

ql/6

l/3 l/3l/3

+

l/3 l/3l/3

T(*)
A

R3(*)

R2(*)

R1(*)

T(*)
B

A B 

5ql²/72 ql²/18

5ql²/72EI
ql²/18EI

B

A

M (sR)
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_Abbassamenti e rotazioni notevoli. 

 Per ottenere il risultato voluto, sostituire alle parti in grigio  carichi e lunghezze in analisi. 

Forze applicate. 

F

l

A B 

A B 

l

BA

B

F

A B 
F

l/3

BA

2l/3

B = Fl²/2EI

VB = Fl³/3EI

A = B

Fl²/16EI

A = 5Fl²/81EI

B = 4Fl²/81EI

A = B

Fl²/9EI

A B 
F

l/3

F

l/3l/3

BA

VB

A = 7Fl²/128EI

B = 5Fl²/128EI

A B 
F

l/4

BA

3l/4

A = B

3Fl²/25EI

A B 
F

2l/5

F

2l/5l/5

BA

A = 55Fl²/1296EI

B = 35Fl²/1296EI

A B 
F

l/6

BA

5l/6

A = 6Fl²/125EI

B = 4Fl²/125EI

A B 
F

l/5

BA

4l/5
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Forze applicate (formula generale). 

Coppie di forze. 

A B 
F

a

BA

b

l

A =
Fb * (l² – b²) *

B =
Fa * (l² – a²) * 1

6EIl

1
6EIl

l

A B

X

X
A B 

l

A = Xl/6EI

B = Xl/3EI

B = Xl/EI

VB = Xl²/2EI

B

VB

BA

Carichi distribuiti. 

A = B

13ql³/648EI

A = B

ql³/24EI

l

A B q

BA

l/3 l/3l/3

A

B

B

A

A = B

37ql³/3000EI

2l/5 2l/3l/5

A

B

B

A

q

q
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B.3
STRUTTURE IPERSTATICHE

Una trave può, al massimo, 
essere tre volte iperstatica (a
destra), e cioè con tre gradi di 
vincolo in più di un sistema 
isostatico.

In questo capitolo verranno analizzate strutture una volta 
iperstatiche, con un grado di vincolo in più.

_Calcolo dell’incognita iperstatica mediante il metodo delle forze. 

a. Il problema prevede la soluzione di quattro incognite. 
I mezzi a disposizione sono le tre equazioni 
fondamentali della statica, che non permettono di 
risolvere tutte le incognite. 

b. togliere il vincolo in più, rendendo la struttura 
isostatica, e caricarla con il carico reale.  in questo 
caso è stato tolto l’appoggio, ma è possibile anche 
rendere l’incastro una cerniera.
Senza l’appoggio, la struttura si deforma nel modo 
illustrato a fianco, individuando l’abbassamento
VB(P).

c. il vincolo tolto in B produceva una reazione incognita; 
se il vincolo fosse rimasto al suo posto l’abbassamen-
to sarebbe stato zero  il vincolo imponeva una 
relazione di congruenza in quel punto.  la reazione 
deve produrre uno spostamento verticale uguale in 
modulo ma di verso opposto a quello del sistema 
senza appoggio; si andrà a calcolare proprio tale 
abbassamento, che prende il nome di incognita
iperstatica (X).

P

l

A B 

MA

HA

VA VB

P

VB(P)
A B 

VB(X)

A B 

X

P

l

A B 
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L’incognita iperstatica, una volta calcolata, viene sostituita nel calcolo delle reazioni vincolari, e 
dà la possibilità di risolvere la struttura.  N.b. sbagliare l’incognita iperstatica significa 
trovare una possibile configurazione equilibrata, ma non congruente con il sistema di partenza. 

Tale metodo prende il nome di metodo delle forze  le incognite sono le forze, e fra tutte le 
soluzioni equilibrate possibili bisogna ricercare quella che restituisce la congruenza. Dunque è 
necessario verificare che la sovrapposizione degli effetti dei due sistemi, l’isostatico (ISO) e 
quello dell’incognita iperstatica (INC), restituisca la coerenza iniziale. 

Al fine di restituire la congruenza è necessario redigere un’equazione di congruenza prima di 
procedere con i calcoli: 

VB(P) + VB(X) = 0 

sistema Reale, carico reale (ISO-sR)      sistema Fittizio, carico reale (ISO-sF)

q(*) = – Pl/2EI

R(*) = – Pl/2EI * l/2 * 1/2 = – Pl²/8EI

M(*)
B – Pl²/8EI * 5l/6 = 0  M(*)

B = 5Pl³/48EI = VB(P)

P

l

A B 

–
Pl/2

M

l

A B 

5l/6

A B 

R(*)

Pl/2EI

sistema Reale, incognita iperstatica (INC-sR)        sistema Fittizio, incognita iperstatica (INC-sF)

q(*) = – Xl/EI

R(*) = – Xl/EI * l * 1/2 = – Xl²/2EI

M(*)
B – Xl²/2EI * 2l/3 = 0  M(*)

B = Xl³/3EI = VB(X)

e quindi: 
VB(P) + VB(X) = 0 
5Pl³/48EI + Xl³/3EI = 0 
dividendo tutto per l³ ed EI

5P/48 – X/3 = 0 
X = 5P/16  = VB

 ora il problema è risolvibile con i metodi conosciuti: 
tre incognite, tre equazioni di equilibrio. 

l

A B 

Xl
M

l

A B 

l/3

A B 

R(*)

Xl/EI

X

+
M(*)

B

P

l

A B 

MA

HA

VA 5P/16
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Per rendere il sistema isostatico, è anche possibile togliere un grado di vincolo all’incastro, 
anziché eliminare l’appoggio; in questo caso l’incognita iperstatica sarebbe divenuta la 
rotazione e non l’abbassamento, poiché l’incastro diverrebbe una cerniera. 

La condizione di congruenza deve imporre che fra tutti i valori della coppia X sia trovato quello 
che permette una rotazione nulla in A.

B(P) + B(X) = 0 

ISO-sR ISO-sF

q(*) = – Pl/4EI

R1(*) = R2(*) = – Pl/4EI * l/2 * 1/2 = – Pl²/16EI

M(*)
B + Pl²/16EI * l/3 + Pl²/16EI * 2l/3 – T(*)

A * l = 0
T(*)

A = Pl²/48EI + 2Pl²/48EI T(*)
A = Pl²/16EI = A(P)

P

l

A B 

P
BA

A(P)
BA

A(X)

P
BA BA

l

+ Pl/4
M

BA

l

R1(*) R2(*)

T(*)
A

Pl/4EI

INC-sR ISO-sR

q(*) = – X/EI
R(*) = – X/EI * l * 1/2 = – Xl/2EI

M(*)
B + Xl/2EI * 2l/3 – T(*)

A * l = 0
T(*)

A = Xl/3EI = A(X)

A(P) + A(X) = 0 
 –Pl²/16EI + Xl/3EI = 0 
 –Pl/16 + X/3 = 0 

X = 3Pl/16  = MA

Riassumendo, per risolvere una struttura iperstatica: 
a. individuare un possibile schema isostatico; 
b. disegnare la deformata qualitativa sia del sistema iperstatico che dell’isostatico, dalle 

quali è possibile accorgersi cosa è stato tolto dal sistema iperstatico; 
c. scrivere un’equazione di congruenza; 
d. risolvere l’incognita iperstatica ed utilizzarla nel sistema reale.

BA
X

X
M

l

X/EI

–

BA

l

BA

R(*)

T(*)
A

P

l

A B 

3Pl/16

HA

VA VB
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_Appendici isostatiche ed oculatezza di risoluzione. 

Il sistema iperstatico a lato può essere affrontato in vari 
modi:
- è possibile togliere l’appoggio in B (metodo a), 

ponendo la congruenza nell’abbassamento in tale 
punto;

- oppure togliere un grado di vincolo all’incastro 
(metodo b), ottenendo però un sistema fittizio di diffi-
coltosa risoluzione. 

metodo a. ISO-sR ISO-sF

metodo b. ISO-sR ISO-sF

Ma si nota che il carico P è applicato su di un’appendice isostatica, ovvero una porzione di 
struttura della quale tutto è noto a priori  si intende lo sbalzo come una mensola, che 
caricata sull’estremo libero crea in corrispondenza dell’appoggio B un momento di incastro. 
è possibile portare il carico nel vincolo, applicando un conseguente momento di trasporto. 

metodo c. ISO-sR                        ISO-sF

P

l

A B 

l/2

C

VB(P)

P

l

A B 

l/2

C

P
BA

A(P)

l l/2

BA
A(P)

BA
A(X)

l l

P Pl/2P

l

A

Pl/2

B

3l/2

CBA

CB

l l/2

A
BA= BC T(*)

BA= T(*)
BC

N.b. è possibile inserire nel calcolo risultati già notil  per un tratto di struttura vincolato da 
una cerniera ed un appoggio, di lunghezza pari a l, con una coppia C applicata ad un vincolo, 
il valore di T(*) nel vincolo dove agisce la coppia sarà C * l/3EI, mentre nell’estremo non 
caricato sarà C * l/6EI (vedi esercizio n.18).

ISO-sR ISO-sF

T(*)
A = Pl/2 * l/6EI T(*)

A = Pl²/12EI = A(P)

INC-sR INC-sF

T(*)
A = X * l/3EI T(*)

A = Xl/3EI = A(X)

BA

l

P Pl/2

Pl/2
M –

l

Pl/2EI

BA

BA

R(*)

T(*)
A

BA
X

XM

l

X/EI
BA

l

BA

R(*)

T(*)
A

+
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A(P) + A(X) = 0 
 Pl²/12EI –Xl/3EI = 0 
 Pl/12 – X/3 = 0 

X = Pl/4  = MA

Trovata l’incognita iperstatica, si ritorna nel sistema di partenza calcolando le altre reazioni 
mediante le tre equazioni cardinali della statica. 

Hi = 0  HA = 0 
Vi = 0   VA + VB – P = 0 
MA = 0    –Pl/4 – P * 3l/2 + VB * l = 0
 VB = 3P/2 + P/4  VB = 7P/4 
 VA = –3P/4 

Redigendo il diagramma di corpo libero, è possibile tracciare la linea delle pressioni  N.b. è
impossibile tracciare la linea delle pressioni a priori, poiché può essere tracciata solamente 
nell’unico sistema equilibrato possibile, dato dalla soluzione dell’incognita iperstatica.

 A differenza dei capitoli dedicati alla statica della trave, nei calcoli compariranno risultati 
anche negativi, che stabiliranno il verso delle reazioni a seconda della convenzione stabilita. 

P

l

A

l/2

CB

Pl/4

HA

VA

P

l

A

l/2

C

7P/4

B

Pl/4

3P/4

–

+

–

+

T

M
Pl/2

Pl/4

P

3P/4

VB

_Calcolo dell’incognita iperstatica operando una sconnessione interna. 

Scartata l’ipotesi di togliere l’appoggio in C
(sistema fittizio complicato), l’ipotesi più 
ragionevole sarebbe togliere l’appoggio in 
B e calcolare nel medesimo punto l’incogni-
ta iperstatica come abbassamento.  
Ma in B si verifica la medesima quantità di 
rotazione nel tratto BA come nel tratto BC,
e quindi c’è continuità di momento fra i due 
tratti  la trave può essere intesa come 
discontinua in B; la congruenza impone 
l’uguaglianza della rotazione  fra i due tratti.

BA = BC

Calcolare l’incognita iperstatica in B
permette di conoscere il valore del momen-
to flettente in quel dato punto, e quindi di 
utilizzarlo nel calcolo delle reazioni vincolari. 
In questo caso, quindi, non si calcola una 
reazione vincolare esterna ma la caratteri-
stica di sollecitazione momento flettente. 

È utile disegnare la struttura per pezzi 
separati, al fine di comporre l’equazione di 
congruenza e di controllare il segno delle 
rotazioni.

Da notare, inoltre, che tutti i risultati ricercati 
sono già stati trovati negli esercizi svolti in 
precedenza: le rotazioni prodotte da X
sono pari a Xl/3EI, e la rotazione in B 
prodotta da P è Pl²/16EI.

T(*)
B = Pl/4EI * l/2 * 1/2 = Pl²/16EI

B(P) + B(X) = B(X)
 Pl²/16EI + (–Xl/3EI) = Xl/3EI

 Pl/16 – 2X/3 = 0 

X = 3Pl/32  = MB

BA

l

C

l

P

BA

l

C

l

P

BA

l

C

l

X X

BA

l

P

BA

l

B C

l

+

=

B+

X–

X+

BA

BC
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Noto il valore del momento in B, la struttura 
è analizzabile per parti con equazioni 
ausiliarie  analogamente alla cerniera 
interna, in questo caso l’incognita ipersta-
tica fornisce un’informazione riguardo il 
momento flettente in un dato punto, ed il 
metodo di calcolo diviene analogo. 

Vi = 0   VA + VB + VC – P = 0 

MBAB = 0   M + P*l/2 – VA*l – 3Pl/32 = 0 
 VA = 13P/32

MBBC = 0   M + VC*l + 3Pl/32 = 0 
 VC = –3P/32

VB = P – VC – VA = P + 3P/32 – 13P/32 
 VB = 11P/16

In verifica dei risultati ottenuti, redigere una 
equazione globale alla rotazione. 

Mi = 0
M – 13P/32 * l/2 + 19P/32 * l/2 – 3P/32 * l = 0 

M = 13Pl/64 – 19Pl/64 + 3Pl/32  M = 0 

sezione 01
0 x l/2

T  T = 13P/32

M o  M – 13P/32*x = 0

per x = 0  M = 0 

per x = l/2  M = 13Pl/64

BA

l

C

l

P 3Pl/32

VA VCVB

BA

l

C

l

P

13P/32

3P/32

11P/16

.
T

M
oA

x
13P/32

sezione 02
0 x l/2

T  T – 13P/32 + P = 0  T = – 19P/32

M o  M – 13P/32*(l/2 + x) + P * x = 0

per x = 0  M = 13Pl/64

per x = l/2  M = 13Pl/64 + 13Pl/64 – Pl/2  M = – 3Pl/32  c.v.d. 

sezione 03
0 x l

T  T – 13P/32 + P – 11P/16  = 0
 T = 3P/32

M o  M – 13P/32*(l + x) + P * (l/2 + x) – 11P/16*x = 0

per x = 0  M = –3Pl/32

per x = l  M = 13Pl/32 + 13Pl/32 – Pl/2 – Pl + 11Pl/16  M = 0 

Per conoscere dove il momento è 
nullo all’interno della struttura, è 
sufficiente scrivere un equilibrio alla 
rotazione fra 11P/16 e 3P/32. 

11P/16*x – 3P/32* (l + x)= 0 

 –3Px/32 + 11Px/16 = 3Pl/32

 19x/32 = 3l/32 x = 3l/19

.
T

M
oA

l/2

P

13P/32

x

.
T

M
oA

l

P

13P/32

x

B

11P/16

–

+

–

+

T

M

3Pl/32

13Pl/64

13P/32
3P/32

19P/32

+

22l/19
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_Esercizio n.22

N.b. in B si considerano due semplifi-
cazioni:

a. l’angolo è indeformabile; 
b. considerando l’indeformabilità 

assiale della trave, il punto B
non si abbassa come avverreb-
be nella realtà. 

Date queste due informazioni, si nota 
che la situazione è analoga a quella 
dell’esempio precedente  in B si
verifica la medesima quantità di rota-
zione nel tratto AB come nel tratto
BC, e quindi c’è continuità di momen-
to fra i due tratti. 

B(P) + B(X) = B(X)

 Pl²/16EI + (–Xl/3EI) = Xl/3EI

 Pl/16 – 2X/3 = 0 

X = 3Pl/32  = MB

BA

l

P

C

l

BA

l

P

C

l

X

X

BA

l

P

BA

B

C

l

l

+

=

B+

X–

X+

Hi = 0   HA + HC = 0   HA = –HC

Vi = 0   VA + VC – P = 0 

MBAB = 0   M + P*l/2 – VA*l – 3Pl/32 = 0 
 VA = 13P/32

MBBC = 0   M + HC*l + 3Pl/32 = 0 
 HC = –3P/32 
 HA = 3P/32

VC = P – VA = P – 13P/32 
 VC = 19P/32

Mi = 0
M – 13P/32 * l/2 + 19P/32 * l/2 – 3P/32 * l = 0 

M = 13Pl/64 – 19Pl/64 + 3Pl/32  M = 0 

  P*x – 13P/32* (l/2 + x)= 0 

  Px + 13Px/32 = 11Pl/32

 45x/32 = 11l/32 x = 11l/45

BA

l

P

C

l

3Pl/32

VA

VC

HA

HC

BA

l

P

C

l
13P/32

19P/32

3P/32

3P/32
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sezione 01
0 x l/2

N  N = – 3P/32 

T  T = 13P/32

M o  M – 13P/32*x = 0

per x = 0  M = 0 

per x = l/2  M = 13Pl/64

sezione 02
0 x l/2

N  N = – 3P/32 

T  T – 13P/32 + P = 0  T = – 19P/32

M o  M – 13P/32*(l/2 + x) + P * x = 0

per x = 0  M = 13Pl/64

per x = l/2  M = 13Pl/64 + 13Pl/64 – Pl/2  M = – 3Pl/32

sezione 03
0 x l

N  N = – 19P/32

T  T = 3P/32

Mo  M + 3Pl/32*x = 0

per x = 0  M = 0 

per x = l  M = – 3Pl/32

N
T

M.oA

x
13P/32

3P/32

N
T

M.oA

l/2

P

13P/32

x

3P/32

N

T
M

.
o

C

x

19P/32
3P/32

–

+

–

+

T

M

3Pl/32

13Pl/64

13P/32

3P/32

19P/32

+

56l/45

–

–

BA

l

P

C

l
13P/32

19P/32

3P/32

3P/32

N

3Pl/32

19P/32
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_Esercizio n.23 

N.b. il tratto AB costituisce una 
appendice isostatica, e quindi la forza 
P viene traslata in B applicando un 
momento di trasporto (vedi p. 60).
Da notare, inoltre, che la forza P
trasportata nel vincolo non ha 
rilevanza alcuna ai fini della flessione, 
in quanto assorbita direttamente dal 
vincolo  si tiene conto solamente 
della coppia applicata. 

C(P) + C(X) = C(X)

 – Pl²/12EI + (–Xl/3EI) = Xl/3EI

 – Pl/12 – 2X/3 = 0 

X = –Pl/8  = MC

CB

l

P

D

l

CB

l

D

l

X

X
P Pl/2

l/2

A

CB

l

CB

C

D

l

l

+

=

C–

X–

X+

Pl/2

Hi = 0   HB + HD = 0   HA = –HC

Vi = 0   VB + VD – P = 0 

MCBC = 0   M + P*3l/2 – VB*l + Pl/8 = 0 
 VB = 3P/2 + P/8  VB = 13P/8

MCCD = 0   M + HD*l – Pl/8 = 0 
 HD = P/8 
 HB = –P/8

VD = P – VA = P – 13P/8 
 VD = – 5P/8

Mi = 0
M + P * l/2 – 5P/8 * l + P/8 * l = 0 

M = 5Pl/8 – Pl/8 – Pl  M = 0 

MC = 0
  P*(l/2 + z) – 13P/8*z = 0 
 – Pz + 13Pz/8 = Pl/2
 5z/8 = l/2 z = 4l/5

CB

l

P

D

l

Pl/8

VB

VD

HB

HD

A

CB

l

D

l13P/8
5P/8

P/8

P/8

P
A

l/2

l/2
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sezione 01
0 x l/2

N  N = 0 

T  T = –P

M o  M + P*x = 0

per x = 0  M = 0 

per x = l/2  M = –Pl/2

sezione 02
0 x l

N  N = P/8 

T  T + P – 13P/8 = 0      T = 5P/8

M o  M + P * (l/2 + x) – 13P/8*x = 0

per x = 0  M = 0 

per x = l  M = 13Pl/8 – Pl/2 – Pl  M = Pl/8

sezione 03
0 x l

N  N = 5P/8

T  T = – P/8

Mo  M – P/8*x = 0

per x = 0  M = Pl/8

per x = l  M = 0 

N
T

M.o

x

N

T
M

.
o

D

x

B

13P/8

P/8

P

N
T

M.oA
P

A

x

l/2

5P/8

P/8

–

+

–

+

T

M

Pl/8

Pl/2

5P/8

P/8

P

+

–

–

N

P/8

5P/8

CB

l

D

l13P/8
5P/8

P/8

P/8

P
A

N=0

l/2

l/5

Pl/8
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_Esercizio n.24

C
BC(P) + C

BC(X) = C
CD(X) + C

CD(P)

C

B

l

A PE

D

P

l ll

l

C

B

l

P
D

l

l

P

Pl Pl

XX

C

B

Pl

C

B

C

D

C

D

Pl

+ = +

C+ X– X+ C–

 struttura simmetrica, 
     caricata simmetricamente.  Pl² 2/6EI + (–Xl 2/3EI) = Xl 2/3EI – Pl² 2/6EI

 Pl² 2/6EI + Pl² 2/6EI = Xl 2/3EI + Xl 2/3EI

 Pl/3 = 2X/3
X = Pl/2 = MC

Hi = 0   HB + HD – P + P = 0    HB = –HD

Vi = 0   VB + VD = 0   VB = –VD

MB = 0   M + VD*2l + P*l – P*l = 0
 VD = 0
 VB = 0

MCAC = 0   M – Pl/2 + HB*l = 0
 HB = P/2 
 HD = –P/2 

C

B

l

A PE

D

P

l ll

l

VB VD

HB HD

Pl/2
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sezione 01
0 x l 2

N  N = –P/ 2

T  T = P/ 2

M o  M – P/ 2*x = 0

per x = 0  M = 0 

per x = l 2  M = Pl

sezione 02
0 x l 2

N  N + P/ 2 + P/2 2 = 0   N = –3P/2 2

T  T + P/ 2 + P/2 2 = 0   T = –3P/2 2

M o  M – P/ 2*l 2 + P/ 2*x + P/2 2*x = 0

per x = 0  M = Pl

per x = l 2  M = Pl – Pl – Pl/2 = 0   M = –Pl/2

.
N

T

M

N
T

M.

A
P/ 2

x

P/ 2

B

A

l 2

P/2 2 x

P/ 2

P/ 2

P/2 2

sezione 03
0 x l 2

N  N = –P/ 2

T  T = –P/ 2

M o  M – P/ 2*x = 0

per x = 0  M = 0 

per x = l 2  M = Pl

sezione 04
0 x l 2

N  N + P/ 2 + P/2 2 = 0   N = –3P/2 2

T  T – P/ 2 – P/2 2 = 0   T = 3P/2 2

M o  M – P/ 2*l 2 + P/ 2*x + P/2 2*x = 0

per x = 0  M = Pl

per x = l 2  M = Pl – Pl – Pl/2 = 0   M = –Pl/2

.
N

T
M

E
P/ 2

P/ 2

x

.
N

T
M

E

D l 2
P/2 2x

P/2 2

P/ 2

P/ 2
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N.b. carico simmetrico e struttura simmetrica:
 grafici di momento e sforzo normale simmetrici, taglio antimetrico.

C

B

l

A PE

D

P

l ll

P/2 P/2

l

M

+ +

Pl

+ +

+

–

T

+
–

–

N

3P/2 2

–

– –

3P/2 2P/ 2

P/ 2

3P/2 2

3P/2 2P/ 2

P/ 2

Pl/2

Pl

_Esercizio n.25

C
BC(P) + C

BC(X) = C
CD(X) + C

CD(P)

C

B

l

A P E

D

P

l ll

l

C

B

l

P
D

l

l

P

Pl Pl

XX

C

B

Pl

C

B

C

D

C

D

Pl

+ = +

C+ X– X+ C+

 struttura simmetrica, 
     caricata antimetricamente. 
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 Pl² 2/6EI + (–Xl 2/3EI) = Xl 2/3EI + Pl² 2/6EI

 Pl² 2/6EI – Pl² 2/6EI = Xl 2/3EI + Xl 2/3EI

 0 = 2X/3
X = 0 = MC

Hi = 0   HB + HD + 2P = 0

Vi = 0   VB + VD = 0   VB = –VD

MB = 0   M + VD*2l – P*l – P*l = 0
 VD = P 
 VB = –P 

MCAC = 0   M + HB*l + VB*l = 0
 HB = –P 
 HD = P – 2P   HD = –P 

Mi = 0
M + P * 2l – 2P * l = 0  M = 0 

C

B

l

A P E

D

P

l ll

l

VB VD

HB HD

X = 0 sezione 01
0 x l 2

N  N = –P/ 2

T  T = P/ 2

M o  M – P/ 2*x = 0

per x = 0  M = 0 

per x = l 2  M = Pl

sezione 02
0 x l 2

N  N + P/ 2 – P 2 = 0   N = P/ 2

T  T + P/ 2 + P/2 2 = 0   T = –P/ 2

M o  M – P/ 2*l 2 + P/ 2*x = 0

per x = 0  M = Pl

per x = l 2  M = Pl – Pl   M = 0

.
N

T

M

N
T

M.

A
P/ 2

x

P/ 2

B

A

l 2

x

P/ 2

P/ 2

P 2
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sezione 03
0 x l 2

N  N = P/ 2

T  T = P/ 2

M o  M + P/ 2*x = 0

per x = 0  M = 0 

per x = l 2  M = –Pl

sezione 04
0 x l 2

N  N – P/ 2 + P 2 = 0   N = –P/ 2

T  T + P/ 2 + P/2 2 = 0   T = –P/ 2

M o  M – P/ 2*l 2 + P/ 2*x = 0

per x = 0  M = –Pl

per x = l 2  M = Pl – Pl   M = 0

.
N

T
M

E
P/ 2

P/ 2

x

.
N

T
M

D l 2
x

E
P/ 2

P/ 2

P 2

N.b. carico antimetrico e struttura simmetrica:
 grafici di momento e sforzo normale antimetrici, taglio simmetrico.

C

B

l

A P E

D

P

l ll

l

M

+ +

Pl Pl

P P
P

P

+

T

+
–

–

N

P/ 2

–

–

P/ 2P/ 2

P/ 2

P/ 2

P/ 2P/ 2

P/ 2

+ +

––
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_Esercizio n.26

C
BC(P) + C

BC(P+P) + C
BC(X) = C

CD(X) + C
CD(P)

 – Pl²/12EI + Pl²/9EI + (–Xl/3EI) = Xl 2/3EI + (– Pl² 2/12EI)
 – Pl²/12EI + Pl²/9EI + Pl² 2/12EI = Xl 2/3EI + Xl/3EI

 – Pl/12 + Pl/9 + Pl 2/12 = X 2/3 + X/3
 – 0,0833Pl + 0,1111Pl + 0,1179Pl = 0,4714X + 0,3333X
 0,1457Pl = 0,8047X

X = 0,181Pl = MC

C

B

l

P
D

l/2

A

l/3

C

B

l

P
D

l/2

A

Pl/2

X

X

C

B

Pl/2

+

C C

D

C

D

= +

C– X– X+ C–

l/3

l/3P

P

P

l/2

l/3

l/3

l/3

P

Pl/2

Pl/2

C

B

+

C+

P

P

E E

N.b. il risultato della rotazione prodotta dalle due forze P nel tratto BC è data dal risultato 
precedentemente contemplato nell’esercizio n.19  forze in l/3; T(*) = Pl²/9EI.

Hi = 0   HB + HD + 2P = 0 

Vi = 0   VB + VD – P + P = 0 
  VB = –VD

MD = 0    M – VB*l + P*3l/2 + P*l/2 – P*2l/3 – P*l/3 = 0 
 VB = 2P – P  VB = P 
 VD = –P

MCCD = 0   M + HD*l – P*l + P*3l/2 + 0,181Pl  = 0 
 HD = P – 1,5P – 0,181P  HD = –0,681P 
 HB = –2P – (–0,681P)  HB = –1,319P

Mi = 0
M + P * l/2 – 0,834P * l + P * l/3 = 0 

M = – 0,5Pl + 0,834Pl – 0,333Pl
 M  0 

0,181Pl
C

B

l

P
D

l/2

A

l/3

l/3

l/3P

P

P

l/2

VB VD

HB HD

C

B

l

P

D

l/2

A

l/3

l/3

l/3P

P

P

l/2

1,319P 0,681P

P

P

E

E
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sezione 01
0 x l/2

N  N = 0 

T  T = –P

M o  M + P*x = 0

per x = 0  M = 0 

per x = l/2  M = –0,5Pl

sezione 02
0 x l/3

N  N + P – P = 0   N = 0 

T  T = 1,319P

M o  M + P*l/2 – 1,319P*x = 0

per x = 0  M = –0,5Pl

per x = l/3  M = 0,44Pl – 0,5Pl   M = –0,06Pl

sezione 03
0 x l/3

N  N + P – P = 0   N = 0 

T  T = 0,319P

M o  M + P*l/2 – 1,319P*(l/3 + x) + P*x = 0

per x = 0  M = 0,44Pl – 0,5Pl   M = –0,06Pl

per x = l/3  M = 0,44Pl + 0,44Pl – 0,5Pl – 0,333Pl   M = 0,047Pl

N
T

M.
A

P

x

N

T
M

.
P

l/2

A

x
B

1,319P

P

N

T
M

.
P

l/2

A

x

B

1,319P

P

P

l/3

sezione 04
0 x l/3

N  N + P – P = 0   N = 0 

T  T = –0,681P

M o  M + P*l/2 – 1,319P*(l/3 + l/3 + x) + P*(l/3 + x) + P*x = 0

per x = 0  M = 0,44Pl + 0,44Pl – 0,5Pl – 0,333Pl   M = 0,047Pl

per x = l/3  M = 0,44Pl + 0,44Pl + 0,44Pl – 0,5Pl – 0,333Pl – 0,333Pl – 0,333Pl
  M = –0,18Pl

sezione 05
0 x l/2

N  N = 0 

T  T = –P 

M o  M – P*x = 0

per x = 0  M = 0 

per x = l/2  M = 0,5Pl

N

T
M

.

P

l/2

A

x

B

1,319P

P

P

l/3

P
l/3

N T

M .

x

P
E
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sezione 06
0 x l 2

N  N + 0,707P – 0,226P = 0   N = –0,481P 

T  T + 0,707P – 1,189P = 0   T = 0,481P

Mo  M – 0,707P*l/2 2 – 0,707P*(l/2 2 + x) + 1,189P*x = 0

per x = 0  M = 0 

per x = l 2  M = 0,25Pl + 0,25Pl + Pl – 1,681 = 0   M = –0,181Pl

.
N

T
M

x D

l/2 2

1,189P
E

0,707P

0,226P

0,707P

P–

+

T

M

P

0,481P

0,06P

+

–

–

N

0,681P

N=0

+

–

+

–

0,0181Pl

0,047P

C

B

l

P

D

l/2

A

l/3

l/3

l/3P

P

P

l/2

1,319P 0,681P

P

P

E

N=0

N=0

0,5Pl
+

0,5Pl

0,481P

0,319P
1,319P
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C.1
ANALISI DELLA DEFORMAZIONE

Considerando tutti i punti di cui è costituito il concio in seguito 
alla deformazione flessionale, sotto l’asse neutro si allontanano e 
sopra si avvicinano.  è evidente che non tutti i materiali 
possono resistere a determinati tipi di deformazione, e che la 
deformazione flessionale non esaurisce le possibili deformazioni 
dei corpi. Verranno quindi affrontati i tipi di deformazione e le 
deformazioni lecite per ogni materiale. 

Ad esempio: un telaio metalli-
co accoppiato ad una lastra di 
vetro.

 Il metallo si deforma 
molto, il vetro quasi per nulla. 

 è necessario studiare la 
compatibilità fra materiali, e 
quindi conoscerne le modalità 
di deformazione. 

Ad esempio, i telai metallici di Mies Van der Rohe sono tutti sovradimensionati, al fine di 
deformarsi meno  la struttura reggerebbe ugualmente anche con dimensioni minori, ma si 
deformerebbe troppo spaccando il vetro. 

Le teorie sulla deformazione sono state 
formalizzate grazie a Cauchy, che ha definito la 
deformazione come il rapporto fra le variazioni di 
lunghezza di un concio e la lunghezza iniziale 
dello stesso. 

(deformazione) =              = 

dilatazione lineare specifica.

 > 0  elongazione lineare specifica
 < 0  contrazione lineare specifica 

Tutto ciò, però, non è sufficiente ad interpretare tutte le deformazioni compatibili con i materiali.

l0 l

l

l – l0
l0

l
l0
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Si analizzi un oggetto costituito da un insieme di punti 
materiali  è necessario individuare la posizione di ciascun 
punto, e quindi si pone un sistema di riferimento. 

rP è il raggio che congiunge il punto P, appartenente 
all’oggetto, con l’origine degli assi.
L’oggetto subisce una trasformazione dallo stato B0 allo stato 
B1.
rP’ = rP + sP           rP = (x,y,z)

a. innanzitutto, l’oggetto subisce una traslazione, con tre 
componenti u, v, w.
Per semplicità, nel caso in figura si considerano solo le 
componenti v e w associate al piano yz.

  sP = t (v,w)

x

y

z
sP

rP

rP’.P

.P’
B0

B1

x

y

z

v

w

x

y

z

.  P 

b. l’oggetto ruota. La rotazione di un punto dipende dalla 
rotazione più la distanza d dal centro di rotazione.   

  sP = t +  * d

c. quanto analizzato in precedenza fa ancora parte del 
movimento rigido dell’oggetto, che alla fine va anche 
stirato.  è possibile porre dei vincoli al movimento 
rigido, ma non bloccare la deformazione. 
sP = t + d + 

 la è l’unica parte dell’espressione relativa alla deforma-
zione pura. Non è possibile vincolarla poiché fa parte delle 
proprietà dei materiali stessi. 

x

y

z

x

y

z
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N.b. ogni punto deve mantenere la sua identità. 
 Qui l’oggetto si compenetrerebbe, non è realmente accet-

tabile.  nulla si crea - nulla si distrugge, i punti si fanno più 
vicini o più lontani ma non si compenetrano  teoria della 
permanenza della materia. 

Saranno trattate solamente trasformazioni topologiche.
 il punto A, nella configurazione B0 punto di frontiera, si 

sdoppia nella configurazione B1 ed il punto B, prima interno, 
diviene di frontiera. Non saranno affrontate situazioni di 
questo tipo, che vengono analizzate nella meccanica della 
frattura  le deformazioni studiate saranno sempre 
reversibili ed elastiche.

.B

.A

.B

.A

B0 B1

.A

_Dilatazione lineare specifica  
  (variazione di dimensione) 

I punti in direzione delle forze si allontanano 

n =

 per sapere come si deforma un oggetto è 
necessario conoscere due punti su di esso, e la 
deformazione relativa fra di essi. 

In termini differenziali: 

x =   =

 esiste una relazione funzionale fra spostamento e 
deformazione. 

u è la funzione spostamento secondo la direzione x;
facendo la derivata secondo x si ottiene la dilatazio-
ne lineare specifica secondo x stessa. 

y =   =

z =   =

N.b. questo tipo di deformazione implica che gli angoli mantengano la stessa entità. 

A’B’ – AB 

AB

( u + x) – x
x

u

x

A.
B’.

A’.
B.

.A

.B’

.A’

.B

y

x
P. P’.
ux

v

y

T’.T.

( v + y) – y
y

v

y

( w + z) – z

z

w

z
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_Variazione angolare o scorrimento puro
  (variazione di forma) 

Con un angolo sufficientemente piccolo è possibile confondere la tangente dell’angolo con 
l’angolo stesso. 

tg 1 = 1 tg 2 = 2

La deformazione è pari a /2 –   = 1 + 2, e quindi:

xy =              + 

xz =              + 

yz =              + 

y

x

P’.
P.

u

x

v
y

T. .T’

2

1

v

x
u

y

v

x
u

y

w

x
u

z

w

y
v

z x u

y v

 z w

-esempio pratico-

Ponendo che: u = K * y
v = K * x
w = 0   (caso piano) x

x =   =

y =   =

xy =              + 

xy = (K*x)/ x + (K*y)/ y = 2K 

uA = K(xA) = K*0 = 0 

vA = K(yA) = K*0 = 0 

uB = K(xB) = K*0 = 0 

vB = K(yB) = K*1 = K 

uC = K(xC) = K*1 = K 

vC = K(yC) = K*1 = K 

uD = K(xD) = K*1 = K 

vD = K(yD) = K*0 = 0 

( u + x) – x
x

u

x

( v + y) – y
y

v

y

v

x
u

y

y

xA (0,0) B (1,0) 

C (1,1) D (0,1) 

y

xA’

B’

C’
D’
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C.2
TEORIA DELLA TENSIONE

Le forze possono essere distinguibili per tipo e per forma. 
- forze di volume: dipendono dalla gravità  es. il peso proprio della struttura. 
- forze di superficie: esercitate dall’ambiente sulla struttura  es. l’azione del vento su di 

una parete. 

Dimensionalmente, la tensione è data da: 

Si consideri ad esempio un elemento B
soggetto ad un sistema n di forze F in 
equilibrio. Tagliando il medesimo con un 
piano di normale ed eliminandone la 
parte destra, si nota che la parte eliminata 
trasmetteva alla restante un insieme di 
azioni, che saranno ora oggetto di analisi. 

Sia preso un punto a sulla sezione 
generata dal piano, ed il suo intorno A.

n  direzione normale al piano di sezione; 
tn   forza specifica secondo la direzione n.

Per A tendente a zero, tn è il vettore
tensione.

È possibile scomporre il vettore tn secon-
do una componente ortogonale ed una
componente tangenziale , sempre rispet-
to al piano .

n  tensioni normali alla superficie.
 tensioni tangenziali alla superficie.

Forza
Area

a.
A

n

tn

[Newton]
[mm²]

a.
A

n

tn

n

.a

n

B
F1

F2

Fn
F3
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Il vettore tn dipenderà dal punto in cui si 
opera la sezione, dalle forze agenti 
considerate, dall’inclinazione del piano di 
sezione e dalla direzione normale n.

tn = (x, n)

 a parità di azioni esterne, nella situa-
zione A si hanno solamente componenti 
normali alla sezione, nella B sia tangen-
ziali che normali. 

Quindi:

tn =

 limite di una generica risultante R e di 
una generica area A.

tn = (x, n)

lim
A 0

R
A(   ) 

n  componente allineata con n

 componente tangenziale

n

A

P

P

n

B

P

P

_Teorema di Cauchy.

Considerando l’intorno del punto P
dx * dy * dz

I piani dell’intorno del punto sono indivi-
duati dalle perpendicolari al sistema di 
riferimento ortogonale x, y, z.

Considerando solamente la tensione in y,

il vettore ty viene scomposto secondo la 

componente ortogonale y e le compo-

nenti tangenti yx e yz.

x

y

 z

x

y

 z

–x

–y

–z

x

y

 z

y
ty

x

y

 z

dz

dy

dx

.
P
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In pratica si scompone un vettore nello 
spazio ty è la diagonale di un 
parallelepipedo.

Il primo pedice (y) è l’identificativo della 
direzione normale al piano, il secondo   
(x) della direzione del vettore.

Ponendo in forma matriciale il tutto, si 
forma un tensore, ovvero una tabella
ordinata i cui componenti sono vettori.

A questo punto è necessario trovare un 
modo di ridurre il numero di incognite in 
gioco.

Considerando la faccia superiore del cubo 
di dimensioni dx * dy * dz (ovvero il 
piano xy), scrivere le tensioni associate 
ad essa e calcolare un equilibrio alla 
rotazione in o. y

Mo = 0 
M – xy*dx/2 – xy*dx/2 + yx*dy/2 + yx*dy/2 = 0

 M – xy*dx + yx*dy = 0 

Considerando il fatto che dx e dy sono uguali, essendo le dimensioni infinitesime del cubo, le 
due tensioni sono uguali.

 – xy + yx = 0 xy = yx

xyx xz

yx y yz

zy zzx

= tn

y

x

dx

dy o.xy x

yx

y

x

y

xy

yx

ty

yx

y

yz

Questo passaggio prende il nome di teorema di reciprocità delle tensioni tangenziali, e 
permette di lavorare con un modello di calcolo semplificato. Espresso in forma matriciale: 

xy = yx

zx = xz

zy = yz

 le incognite si riducono da nove a sei. 
N.b. l’eguaglianza si verifica per il modulo
delle tensioni; le direzioni restano comun-
que diverse  i piani in cui giacciono le 
tensioni tangenziali eguali sono infatti 
perpendicolari.

Tutto ciò è utile per individuare un piano
sulla cui ortogonale si verifichino solo 
trazione e compressione.  nella realtà, 
le lesioni si formano ortogonalmente alla 
direzione di trazione; in questo caso, le 
azioni tangenziali sono tutte pari a zero. 

 l’obiettivo finale è la ricerca delle 
direzioni principali di trazione e compres-
sione.

Studiando ad esempio il piano fessurativo 
di una trave, si nota che la fessura si 
inclina ortogonalmente ai piani principali, 
dove si verifica solo trazione e compres-
sione.

Da notare che il taglio è legato ad azioni 
di tipo tangenziale , mentre il momento è 
legato alle azioni normali .

 l’andamento del quadro fessurativo è 
legato l’inclinazione dei piani principali, ed 
il taglio esiste nei tratti di fessura inclinata 
dove si verificano azioni tangenziali. 

xyx xz

yx y yz

zy zzx

= tn

N

N

NN

M

T

+

–

+
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L’obiettivo finale è arrivare alla condizione in cui non si verificano azioni tangenziali. 

Al fine di ottenere questo risultato, è utile la trattazione del paragrafo successivo sul cerchio di 
Mohr, ovvero una modalità di rappresentazione grafica dello stato tensionale di un punto.

xyx xz

y yz

z[simm.]

0I 0

II 0

III[simm.]

_Cerchio di Mohr. 

Tale costruzione geometrica serve a descri-
vere graficamente lo stato tensionale di un 
punto.

Si inizia ponendo un sistema che abbia in 
ascissa le tensioni normali , ed in ordinata 
le tensioni tangenziali .
Successivamente verrà tracciato un cerchio 
che, al variare dell’angolo, restituirà valori 
e  per un piano di normale n.

a. disegnare tre punti. 

- a = ( x , 0)  tensione sul piano di normale x;

- b = ( y , 0)  tensione sul piano di normale y;

- m = ( x , xy) punto chiamato polo della rappresentazione.

porre ad esempio  x = 3, y = 1, xy = –2. 

b. trovare il centro C fra b ed a.
 ( x – y)/2 = C

c. tracciare il raggio R del cerchio 
pari al segmento Cm, e disegnare 
la circonferenza. 

b. a.

m.

.
C

R
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d. da notare che il punto m rappre-
senta il piano xy ruotato.
Se, per ipotesi, si intendesse cono-
scere lo stato tensionale di un 
generico piano , è sufficiente 
porre un piano ruotato sul piano di 
partenza xy.

e. nelle intersezioni fra il cerchio ed il 
piano si ottengono nuovi valori 
tensionali relativi al piano in 
questione. il cerchio di Mohr è 
una costruzione geometrica per 
scoprire coppie di valori n e n per 
piani qualsiasi.

Si nota che, per passare dal piano xy al
piano , l’intorno del punto ha subito una 
rotazione di angolo  (vedi anche p. 82).

La circonferenza ha raggio invariabile, e 
quindi le combinazioni di n e n non
variano  le somma vettoriale, e cioè il 
raggio, resta uguale. 

.
y

x

o.xy x

yx

y

x

y

xy

yx

o.

y

x

1

1

2

2

b. a.

m.

.
C

R

y

x

.

.
R =      (( x – y)/2)² + xy²

 = R (1 + cos(2 ))

 = R sen(2 )

N.b. 2 è un angolo al centro, mentre è un 
angolo alla circonferenza. Per costruzione 
geometrica, un angolo al centro è sempre due 
volte un angolo alla circonferenza.

Da notare che si avranno unicamente 
tensioni di tipo normale n quando la 
circonferenza interseca l’asse .

il piano dove non si verificano tensioni 
tangenziali n è quello che passa per i 
punti di intersezione fra il cerchio e l’asse

. la costruzione del cerchio di Mohr è 
utile per l’individuazione dei piani principa-
li di sezione di una trave.

  x.
2

.
C

y

x

.

m.
R

.

.
C

y

x

.
2

m.
R

.
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-esempio pratico- 

Riprendendo l’esempio del precedente 
paragrafo, è possibile analizzare lo stato 
tensionale del sistema nei punti A e B 
mediante il cerchio di Mohr.

punto A  presenza solo di sforzo 
normale di trazione. La compressione è 
nulla.
x  0, y = 0, xy = 0 

stato monoassiale  solo una compo-
nente.

punto B  il piano comincia a ruotare. 
x  0, y = 0, xy  0 

stato pluriassiale  da due a tre com-
ponenti.

I = sigma massima (max. trazione) 
II = sigma media
III = sigma minima (max. compressione)

.
  B

.
  A

C.

y

x
a = m.b.

R

C.
y

x

a.b.

m.
R

M

T

+

–

+

_Stati tensionali notevoli.

Stato triassiale. 

Stato biassiale. 

Stato monoassiale. 

Taglio puro
(particolare stato biassiale). 

II = a = b = C .

m.

..III I

.
C

a = m = I.b = II = III = 0.

..
III III

 . 
       C

m = zx.
.

 a = z

xz  .
.. I

b = x = II = 0.
III
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C.3
MATERIALI

_Leggi costitutive dei materiali. 

Prendere, ad esempio, una barretta di materiale qualsiasi a sezione circolare, sollecitandola 
con un’azione di compressione P; l’effetto dell’azione produce una deformazione. 

  =              =                = deformazione longitudinale.

t  = =               = deformazione trasversale. 

Se nel diagramma costitutivo - , giunto al 
valore 0, il materiale raggiunge il suo limite di 
resistenza viene detto elasto-fragile. Esistono 
materiali che presentano lo stesso limite a 
trazione ed a compressione (vetro), ed altri che 
presentano valori diversi (calcestruzzo). 

Se superato il valore limite il materiale accetta 
ancora sollecitazioni si parla di materiale duttile,
con grande capacità di adattarsi alle deforma-
zioni. Solitamente i materiali duttili resistono in 
ugual modo sia a trazione che a compressione 
(acciaio).

l0
l

d0

d

l – l0
l0

l
l0

d – d0

d0

d
d0

P

0

0

0

0

compressione

trazione

compressione

trazione
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Il primo tratto del diagramma costitutivo è lineare 
(sino al valore 0); in questo caso si parla di 
campo lineare elastico, ovvero il legame -  è 
rappresentato da una retta. Le deformazioni in 
campo lineare elastico sono reversibili.

Superato il valore limite 0, il materiale accetta 
ancora tensioni (la legge costitutiva non è più 
lineare), ma le corrispondenti deformazioni non
sono più reversibili campo plastico, lo scarico 
avviene secondo una retta parallela a quella del 
campo elastico, spostata  il materiale non può 
più tornare alla condizione iniziale. 

Ad esempio, il campo plastico dell’acciaio si divide in: 

- snervamento: auto-bloccaggio casuale e disordinato a livello mole-
colare.

- incrudimento (hardening): il materiale può ancora assorbire ten-
sioni, ma modifica la sua struttura sempre di più, finché collassa. 

deformazione in campo elastico. 

si verifica una strizione  una sezione si contrae 
più delle altre; avviene circa a metà del campo 
plastico. Il punto centrale della strizione è il punto 
dove si verificherà la rottura. 

Schematizzazioni.

modelli elastico – perfettamente plastici
 non si considera che il materiale assorba 

tensioni raggiunto il valore 0, ma si deforma 
solamente fino alla rottura. 

elastico – plastici con incrudimento
 si tiene conto del fatto che il materiale, anche 

se in campo plastico, può assorbile ancora di 
tensioni.

0

0 = P

0 = P

_Rapporti fra tensioni e deformazioni. 

In campo lineare elastico, le deformazioni avvengono in base a: 

E, modulo di Young = E* ; esiste un E per ogni materiale.
ed E si misurano in N/mm2, mentre la deformazione è un numero.

, modulo di Poisson t = * ; è il coefficiente di contrazione trasversale. 
t, ed sono numeri.

x x

y y

z z

xy = yx xy = yx

zx = xz zx = xz

zy = yz zy = yz

 Partendo dalle deformazioni longitudinali, bisogna legarle alle trasversali, ottenendo 
una matrice a trentasei caselle. 

- Se la matrice è piena, il materiale è detto anisotropo, ovvero ha un comportamento 
diverso per ogni direzione. 

- Se il materiale ha delle direzioni privilegiate di utilizzo è detto ortotropo; ad esempio il 
legno, dà prestazioni differenti se utilizzato parallelamente o perpendicolarmente alle 
fibre; occupa diciotto termini della matrice. Anche la muratura è associabile ad un 
materiale ortotropo, ma più problematico: è disomogenea, e campionando in più punti si 
ottengono risultati diversi. 

- Se il materiale si comporta nello stesso modo in tutte le direzioni è detto isotropo;
esempio calzante è l’acciaio. Anche il calcestruzzo e la ghiaia sono statisticamente 
materiali isotropi. 
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_Tensioni e deformazioni in materiali isotropi. 

Prendere ad esempio un provino cubico di 
materiale isotropo.  

Applicando uno sforzo normale di trazione 
secondo y, si nota che il materiale si 

allunga secondo y e si comprime nelle 
altre due direzioni. 

y = E y y =

z ed x sono le deformazioni trasversali, 

legate ad y tramite il coefficiente di Pois-

son, .

x = z = – * y = – 

i materiali isotropi riempiono tre termini della suddetta matrice: una deformazione 
longitudinale (un modulo di Young) e due deformazioni trasversali (due coefficienti di Poisson). 

x = E x x =            ; y = z = – * x = – 

z = E z z =            ; x = y = – * z = – 

y

E x

y

 z

yy

x

z

x

z

y

E

x

E
x

E

z

E
z

E

Tirando da tutte le facce del provino: 

x =            –            –

y =            –            –

z =            –            –

Per legare le tensioni tangenziali taglianti alle deformazioni trasversali esiste una costante di 
taglio G, misurata in N/mm2.

xy = G xy

xz = G xz

zy = G zy

Per materiali isotropi, G vale:

G = 

un materiale isotropo è legato a due costanti: G ed E, E e , e G.

- E > 0   è sempre positivo, poiché non è possibile che un materiale tirato si accorci.
- G > 0  idem.
- –1 <  < 0,5 anche se per materiali strutturali è compresa fra 0 e 0,5  i materiali 

strutturali non si dilatano trasversalmente quando vengono sottoposti a trazione.

x

y

 z

yy

x

z
x

z

z

E
y

E
x

E

z

E
x

E
y

E

x

E
z

E
y

E

E
2(1+ )
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Riassumendo:

 le sono collegate solo alle con pedice uguale tramite 1/G;
 le sono collegate alle con pedice uguale tramite 1/E;
 le sono collegate alle con pedice diverso tramite - /E.

Tale matrice esprime le coordinate del vettore deformazioni e e del vettore tensioni t, e viene 
indicata con la lettera A per semplicità  noto uno stato, tensionale o deformativo, si ottiene 
l’altro. 

x x

y y

z z

xy = yx xy = yx

zx = xz zx = xz

zy = yz zy = yz

         e = A t                t = A-1 e (l’apice -1 indica l’inverso della matrice di partenza)

A x y z xy xz zy

x 1/E - /E - /E 0 0 0 

y - /E 1/E - /E 0 0 0 

z - /E - /E 1/E 0 0 0 

xy 0 0 0 1/G 0 0

xz 0 0 0 0 1/G 0

zy 0 0 0 0 0 1/G

1/E ; - /E

E ;

1/G

G

t e

_Criteri di resistenza dei materiali. 

materiali fragili  la tensione 0
coincide con la R di rottura.

materiali duttili  la tensione 0
coincide con la tensione di sner-
vamento S.

Si introduce dunque il concetto di 
grandezza indice del pericolo (G.I.P.):

- Nei materiali fragili la G.I.P. è
solamente una tensione di valore 
normale, di tipo ; le non
influiscono.

- Nei materiali duttili la G.I.P. è
determinata da tutte le tensioni, sia

che .

Ovviamente le strutture vanno verificate 
con una V che tenga conto di un
coefficiente di sicurezza CS.

0 = R

0 = S

T = S.C = - S. 0

R

R

V
CS

compressione trazione 
T = R.0

compressione trazione 
C = - R.
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Si individua a questo punto un dominio 
degli stati ammissibili, entro il quale 
verificare una struttura. 

Portando in tre dimensioni il tutto, si 
costruisce una sfera nello spazio delle 
tensioni principali I, II, III, che raccol-
ga il dominio degli stati ammissibili.

V. - V. 0

stati ammissibili 

I II

III

.

_Modello di Galileo – Rankine. 

Utilizzato per materiali fragili. È necessario verificare che le tre  principali I, II e III siano
minori della T di trazione e maggiori della C di compressione. 

G.I.P. = { I, II, III } T

G.I.P. = { I, II, III } C

-esempio pratico- 
Parete, oggetto bidimensionale. 

I  0, II  0, III = 0.

 il dominio è compreso fra le
massime di compressione e trazione per

I e II.

Dopo aver disegnato un modello della 
struttura e dei carichi agenti, si passa a 
campionare un punto A qualsiasi, che 
sarà definito, come noto, da:
x , y , xy.

Mediante il cerchio di Mohr vengono 
analizzate I e II; se si trovano 
all’interno del dominio la struttura è 
verificata, al contrario se tangenti o 
esterne al dominio.

I , II = C ± R 

2                  2 

±                    + xy

II

I

T.

.
C

T.C .

qF

.A

x + y

2
x – y

2

. .

m ( x, xy).
R

. . .
a ( x,0)b ( y,0)

CII I

x + y

2
x – y

2

xy
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Calcestruzzo.

Viene verificato solamente a C di com-
pressione.

T di trazione = 0. 

In pratica, viene ristretto il campo di 
dominio. 

N.b. nei provini: 

Il provino A, a causa degli 
sforzi applicati, si deforma 
molto più facilmente del B.
La condizione B è più sicura 

ecco perché molto spesso i 
pilastri vengono ingabbiati: per 
contrastare lo spanciamento.

_Criterio di Coulomb. 

Viene utilizzato per murature, e descrive 
crisi per decoesione e scivola-mento dei 
piani. Si usa il piano di Mohr ( , ).

T in questo caso è la massima trazione 
sostenibile per il materiale. 

Ne risulta un dominio a forma di cono. 

| | = c – 

leggasi: valore assoluto di  = coesione (c) – coefficiente di attrito ( ) per .

II

I

.
C

C .

T.C  .

II

I

.A

.B

A

B

_Criterio di Tresca. 

Utilizzato per materiali duttili. Le G.I.P. sono le tensioni tangenziali , ed in particolare la max.

max =                 = |R|

leggasi: massima = valore assoluto di
I – II mezzi, e cioè il raggio del cerchio 

di Mohr in valore assoluto. 

Quindi, per uno stato tridimensionale, il 
Tresca enuncia: 

max = ½ * max{ ( I – II); ( II – III); ( III – I) }

 verificare che la sia compresa entro le massime a trazione e compressione. 

C I – II T

C II – III T

C III – I T

Negli angoli superiore sinistro ed inferiore 
destro lo snervamento del materiale deve 
già essere avvenuto.
Quindi il Tresca formula un grafico sosti-
tutivo al modello di Galileo-Rankine 

In oggetti bidimensionali (assenza di III):

C I – II T
 definisce una retta compresa fra C e T.

C II T

C I T

Si ottiene il cosiddetto esagono di Tresca, identificativo delle massime del materiale. 

. .

m ( x, xy).
R

. . .
a ( x,0)b ( y,0)

CII I

max  .I – II

2

II

I

T.

.
C

T.C .
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D.1
TRAVE DI DE SAINT-VENANT

Il modello si compone di alcuni punti cardine:

a. modello geometrico: 
- a << l
- b << l

“<<” sta per “molto più piccola di”.

b. modello meccanico: 
- lineare elastico 
- omogeneo
- isotropo 

La trave è pensabile come formata da un insieme di fibre (ad esempio un pacco di spaghetti). 

I campi diversi da zero sono: 

z  0; zx  0; zy  0.

 il tutto avviene in campo lineare elastico, quindi è possibile utilizzare la sovrapposizione 
degli effetti. 

yx

z

yx

a

b

l

z

zx
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_Casi descritti in trave di De Saint Venant. 

Nz  = z dA 

Ty  = zy dA

Tx  = zx dA

 parametri di sollecitazione per la sezione di normale z.

A

A

A

a.
A

n

tn

x

y

z

Mx = z * y dA

My = z * x dA

Mt =    (– zy*x + zx*y ) dA

A
x z

y

Mx

My

Mt

A

A
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D.2
CENNI DI GEOMETRIA DELLE AREE

È necessario, in una trave, conoscere il baricentro della sezione, ovvero il punto dove si 
collocano le informazioni studiate, in forma schematica, nel calcolo strutturale. 

_Individuazione del baricentro di una figura. 

Esempio: trave con sezione a T. 
.

 ogni sezione in cui si individua un asse 
di simmetria possiede il baricentro lungo  
tale asse. 

a. scomporre la figura in parti, delle 
quali è possibile conoscere senza 
problemi il baricentro  scomposi-
zione in rettangoli. 

b. disegnare dei vettori rappresentanti 
ogni area, individuata nei baricentri 
delle medesime. 

a

a

a

a a

a

3a²

2a²

A1

A2
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La seconda coordinata del baricentro globale è la risultante dei due vettori, dove il momento è 
zero.  la risultante è all’interno dei due vettori, purché essi siano di verso concorde. 

c. calcolare il momento dei due vettori rispetto ad un asse scelto opportunamente. 

3a²*(5a/2 – y) + 2a²*(a – y) = 0 

N.b. la y che compare nell’equazione serve ad 
applicare un’incognita alla stessa. 

 15a³/2– 3a²y + 2a³ – 2a²y = 0 

 19a³/2– 5a²y = 0 y = 

Scrivendo sotto forma di formula il tutto: 

yg (coordinata y baricentro) =

xg (coordinata x baricentro) =

In generale: 

Sxi = Ai * yi

Syi = Ai * xi

con:
Ai = area totale i-esima della sezione,
Si = momento statico i-esimo della sezione.

Il momento statico è il rapporto fra un’area ed una lunghezza, è una grandezza espressa al 
cubo. Può essere nullo (nell’asse baricentrico) negativo, positivo. 

3a²

2a²

x

y

19a³

2* 5a² area totale della sezione. 

Sx
A
Sy
A

d. redigere una tabella con aree, lunghezze e momenti statici. 

Ai yi xi Sxi Syi

A1 3a² 5a/2 3a/2 15a³/2 9a³/2
+      

A2 2a² a 3a/2 2a³ 3a³
      

totali 5a² 19a³/2 15a³/2

yG =           =               = 19a/10 = 1,9a

xG =           =               = 3a/2

Ovviamente, prendendo in considerazione 
un altro asse x’, il risultato non cambia
il valore rispetto al nuovo asse è diverso, 
ma la posizione di XG rimane invariata.

Ai yi Sx’i

A1 3a² a/2 3a³/2
+    

A2 2a² –a –2a³
    

totali 5a² –a³/2

yG =           = –                = a/10 = 0,1a

0,1a + 1,9a = 2a (distanza fra i due assi x ed x’ c.v.d.)

Sx
A

19a³
2

1
5a³

Sy
A

15a³
2

1
5a³

Sx’
A

a³
2

1
5a³

a

a

a

a a

a

yG

xG

x

x’

1,9a

0,1a

y 3a/2
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_Esercizio n.27 

La tab_A si riferisce alla consue-
ta soluzione per scomposizione 
(a destra), mentre la tab_B ana-
lizza una soluzione alternativa 
per sottrazione di aree (in basso) 
tenendo conto dell’asse x’.

tab_A Ai yi Sxi tab_B Ai yi Sx’i

A1 3a² 5a/2 15a³/2 A5 25a² 5a/2 125a³/2
+    –    

A2 2a² a 2a³ A6 2*2a² 3a 12a³
+    –    

A3 3a² –a/2 –3a³/2 A7 2*4a² 3a 24a³
+    +    

A4 5a² –3a/2 –15a³/2 totali 13a² 53a³/2
       

totali 13a² a³/2    

yG =           =                = a/26 = 0,04a

yG =           =                = 53a/26 = 2,04a

2,04a + (–0,04a) = 2a (distanza fra i due assi x ed x’ c.v.d.)

Sx
A

a³
2

1
13a³

x’

A5 = 25a²

A6 = 2a²

A7 = 4a²

a

a

a

a a

a

a a

a

a

3a²

2a²

3a²

5a²

x

A1

A2

A3

A4

xG

yG

Sx’
A

53a³
2

1
13a³

_Il momento di inerzia. 

Il momento statico delle travi A e B è 
uguale, ma le medesime si inflettono in 
modo diverso, offrendo una diversa resi-
stenza alla flessione  è possibile studiare 
questa caratteristica con il momento di 
inerzia, ovvero la capacità della trave di 
opporsi alla rotazione. 

in queste pagine verrà affrontato solamente 
il momento di inerzia assiale.

Ix (momento di inerzia assiale rispetto all’asse x) =         Ai * yi²

Iy (momento di inerzia assiale rispetto all’asse y) =         Ai * xi²

N.b. Il momento di inerzia è il rapporto fra un’area ed una distanza al quadrato
 è una quantità sempre positiva.

Per assi baricentrici di sezioni rettangolari i momenti di inerzia sono pari a: 

IxG = IyG =

Per assi tangenti alle sezioni rettangolari i momenti di inerzia sono pari a: 

Ixi = Iyi =

IxG =            =

A. sezione con b di gran lunga minore di h

B.  sezione con b di gran lunga maggiore di h IxG =            =

 la sezione A è molto più resistente alla flessione della sezione B.

BA

h
x

b

y

.
G

n

i = 1

n

i = 1

bh³
12

b³h
12

bh³
3

b³h
3 a

3a

a
3a

a*3a³
12

9a4

4

3a*a³
12

a4

4
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_Teorema del trasporto. 

Siano date tre aree A1, A2, A3 
espresse in forma di vettori, ed il 
loro asse baricentrico XG.

IxG =        Ai * yi²

Si applichi un piccolo incremento d alle distanze y, in modo da calcolare il momento di inerzia 
rispetto ad un asse qualsiasi e non all’asse baricentrico delle aree.

Ixi =         Ai * (yi + d)²

Ixi =        Ai * yi²  +        Ai * d²  +       Ai * yi * d

Ixi = IxG  +      Ai * d²

Il momento di inerzia assiale rispetto ad un asse qualsiasi è pari al momento di inerzia 
assiale baricentrico più l’area della figura. 

il momento di inerzia assiale baricentrico è il momento più piccolo fra i possibili momenti di 
inerzia di una figura. 

La formula enunciata poc’anzi prende il nome di teorema del trasporto, il quale permette di 
trovare il momento di inerzia di una figura rispetto ad un asse baricentrico ed un asse 
qualsiasi. 

A1

A3

A2 xg

y1

y2y3

n

i = 1 

n

i = 1 

n

i = 1 

n

i = 1 

n

i = 1

IxG momento
statico

distanza rispetto ad un asse 
baricentrico = 0 

il rapporto fra i due è zero. 

n

i = 1

_Modalità applicative del teorema del trasporto. 

Riprendendo l’esempio precedente (sezione a T): 

Ai yi xi Sxi Syi

A1 3a² 5a/2 3a/2 15a³/2 9a³/2
+      

A2 2a² a 3a/2 2a³ 3a³
      

totali 5a² 19a³/2 15a³/2

yG =           =               = 19a/10 = 1,9a

xG =           =               = 3a/2

Sx
A

19a³
2

1
5a²

Sy
A

15a³
2

1
5a²

a

a

a

a a

a

yG

xG

x

1,9a

y 3a/2

A1

A2
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Primo metodo: asse tangente

Non è possibile calcolare Ix né rispetto ad Xg né ad x, poiché non sono assi tangenti alle 

due aree.  si pone un nuovo asse x’, tangente ad entrambi i due rettangoli di scomposi-
zione.

Ix’ = Ix’(A1) + Ix’(A2)

Ix’ =              +          =             =          =  3,67a4

E quindi, applicando il teorema del trasporto: 

IxG  = Ix’  –  Ai * (x’ – Xg)²  IxG  =  3,67a4 – 5a²*(0,1a)² =  3,62a4

x

x’
xG

A1

A2

3a*a³
3

a*(2a)³
3

3a4+8a4

3
11a4

3

distanza
 fra gli assi 

Secondo metodo: assi barcentrici delle singole aree

Se non è possibile trovare assi tangenti a tutte le aree, applicare il teorema del trasporto per gli 
assi baricentrici noti delle aree di scomposizione. 

N.b. per le due aree, in questo caso, l’asse XG è un asse qualsiasi  vanno sommati i 
momenti di inerzia di ogni area e le aree per le rispettive distanze dall’asse al quadrato.

Ix (IxG) = IxGi  +      Ai * d²

IxG  = IxG1(A1) + A1*( xg1 – Xg)² + IxG2(A2) + A2*( xg2 – Xg)²

IxG  =              +  3a²*(0,6a)²  +                  +  2a²*(0,9a)²

 IxG  =  0,25a4 +  1,08a4 +  0,67a4 +  1,62a4 =  3,62a4 c.v.d.

xG A2

xG A1
xG

0,6a
0,9a

3a*a³
12

a*(2a)³
12

n

i = 1 
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Terzo metodo: pieno meno vuoto

Analogo al primo metodo, con la differenza di considerare la figura inscritta in un rettangolo, e 
calcolare l’inerzia del pieno meno l’inerzia dei vuoti tangenti.

Ix = Ix(Ap) – Ix(Av1) – Ix(Av2)

Ix =                    –  2             =                        =  21,67a4

Applicando il consueto teorema del trasporto: 

IxG  = Ix  – A * (x – Xg)²

  21,67a4 – 5a²*(1,9a)² = 21,67a4 – 18,05a4 =  3,62a4 c.v.d.

x

xG

Av1 Av2 

3a*(3a)³
3

a*(2a)³
3

Ap

81a4 – 16a4

3

_Esercizio n.28 

yG =           =   – 4a³             = – a/3 = – 0,33a

L’asse stabilito è utile anche nel 
calcolo del momento di inerzia, dal 
momento che può essere conside-
rato tangente a tutte le aree 

Il momento di inerzia delle aree 
piccole si ottiene per differenza fra il 
momento delle aree Ap3 e quello 
delle Av1; è possibile moltiplicare 
per quattro il momento trovato, in 
quanto le piccole aree sono tutte 
equidistanti dall’asse x.

Ix =                    +  4                  –                +

Ix =             +  4          +   =              =  20a4

IxG  = Ix  –  Ai * (x’ – Xg)² IxG  =  20a4 – 12a²*(0,33a)² =  18,69a4

Ai yi Sxi

A1 3a² 3a/2 9a³/2
+    

A2 a² a/2 a³/2
+    

A3 3a² –a/2 –3a³/2
+    

A4 5a² –3a/2 –15a³/2 
    

totali 12a² –4a³

Sx
A

1
12a²

a

a

a a

a

a a

a

a

3a²

a²

3a²

5a²

x

A1

A2

A3

A4

xG

yG

x
xG

yG

Ap1 = 6a² Ap3 = 2a²

Ap2 = 2a²Av1 = a²

3a*(2a)³
3

a*(2a)³
3

a4

3
a*(2a)³

3

24a4

3
8a4

3
7a4

3
60a4

3
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D.3
SFORZO NORMALE E FLESSIONE

_Sforzo normale in trave di De Saint-Venant. 

Ipotizzando che la trave sia soggetta solo ad uno sforzo normale di trazione: 

ZE è la zona di estinzione  lo sforzo 
concentrato si distribuisce per la sezione. 
È possibile rappresentare tale fenomeno 
mediante un integrale.

N  = z * A

z è costante, e quindi viene tratta fuori 
dal segno di integrale.

N  = z A

L’integrale in A delle porzioni infinitesime
A è uguale alla area stessa. 

A = A

Quindi, la tensione z è uguale allo sforzo 
normale N fratto l’area A.

N  = z * A

z =

N

ZE

z

y

A

A

A

N
A
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Se il materiale è isotropo la trave si deforma secondo x, y, z (vedi p.88).

z =            –            –

z = 1/E ( z – * ( x + y)

Dato che non si verificano tensioni trasversali x e y, z è pari a:

z =             =             =

Quindi la deformazione della trave è: 
- direttamente proporzionale allo sforzo N;
- inversamente proporzionale al modulo elastico E ed all’area A della sezione. 

EA è la rigidezza assiale.

l =

x

E
z

E
y

E

l
l0

NN

z

E
l
l0

N
EA

N*l0
EA

È ora possibile occuparsi dell’area della sezione, che si contrarrà secondo le deformazioni 
trasversali x e y.

x = 1/E ( x – * ( y + z)

y = 1/E ( y – * ( x + z)

x =  –              =  – 

y =  –              =  – 

 compare il segno meno, poiché la deformazione è opposta alla precedente  è generata 
dalla compressione anziché dalla trazione. 

È quindi possibile rappresentare il comportamento della sezione mediante un unico cerchio di 
Mohr z è costantemente distribuita in tutta la sezione; in questo caso il punto m coincide
con a, poiché non si verificano tensioni tangenziali.

z  0, x = 0, xz = 0 

 il piano della sezione è un piano 
principale, e la I di trazione coincide con 
la z  caso monoassiale. 

x

y

l

z

E

l0

N
EA

z

E
N

EA

C.

y

x
a = m ( z, xz).b ( x,0).

R
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_Flessione in trave di De Saint-Venant (formula di Navier). 

Prendere una trave soggetta a due 

momenti Mx costanti in tutta la trave.

Il pedice x indica intorno a quale asse 

ruota il momento; in questo caso, l’asse x
è l’asse di sollecitazione.

Le fibre della sezione saranno tese al 
lembo inferiore e compresse al superiore. 

Mx = z * y dA 

z = Ky

z digrada da un valore massimo fino 
a coincidere con l’asse neutro, dove non 
si verifica tensione z.

Mx =     Ky * y dA  =   K y² dA  =  K * Ix

z = Ky =             * y flessione semplice retta (formula di Navier).

yx
z

yx

Mx

Mx

MM

A

A A

Mx
Ix

yx

 La tensione è direttamente proporzionale al momento flettente, inversamente proporzionale 
al momento di inerzia e dipende da che punto y della sezione viene analizzato. 

 si andrà a verificare la tensione della sezione ai lembi superiore ed inferiore, dove è massi-
ma.

Il momento flettente, in ogni caso, può 
agire secondo un asse che non è un asse 
principale di inerzia (x o y).

 È possibile trattare il momento come 
un vettore (rappresentato dalla doppia 
freccia) e scomporlo in due componenti 
secondo gli assi principali. 

z =            * y  –           * x flessione deviata.

 è stato posto il segno meno al secondo membro poiché la componente di M secondo y è
discorde rispetto al verso dell’asse. 

y

x z
M

M
My

Mx

Mx
Ix

My
Iy
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-esempio pratico- 

Prendere una trave incastrata a sezione 
rettangolare. 
Non si verifica né taglio T né sforzo nor-
male N M positivo e costante in tutte 
le sezioni della trave. 

z =            * y

Per assi baricentrici di sezioni rettangolari 
i momenti di inerzia sono pari a: 

IxG =

Trovandosi sull’asse neutro non si verifica 
tensione. y = 0 

Sostituendo h/2 ad y:

z =             *    6 t trazione.

z =             * –  –6 c compressione.

l

A B M

M M+

y

x
h/2

h/2

Mx
Ix

bh³
12

Mx 12 
bh³

h
2

Mx

bh²

Mx 12 
bh³

h
2

Mx

bh²

t

c

c.
b.
a.

d.
e.

È ora possibile applicare il cerchio di 
Mohr, secondo il modello trave di De 
Saint-Venant.

x = y = xy = 0

z  0
xz = 0

yz = 0

 il valore z coincide con il valore 
massimo di trazione, mentre – z con il 
massimo di compressione. Scegliendo i 
punti b o d, non si ottengono valori utili 
alla verifica; scegliendo il punto c, il 
cerchio di Mohr degenera in un punto. 

a = m.c.

a.c. b.e. d.
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Si ha sovrapposizione degli effetti fra un campo costante prodotto da N ed uno a “farfalla” 
prodotto da M.
N.b. nella somma, l’asse baricentrico XG non coincide più con l’asse neutro (AN).

Quindi, in caso di sforzo normale N eccentrico, è possibile enunciare:

z =        + y

Equazione che, se posta uguale a zero, restituisce la posizione dell’asse neutro. 

        + y = 0

Semplificando e riducendo il tutto: 

Mx = N*e
²x = Ix/A  raggio di inerzia secondo l’asse x.

        + y = 0           1 + y  = 0 

ma, sapendo che N/A = 0 non è una condizione possibile, è sufficiente porre uguale a zero il 
resto dell’equazione.

   1 + y = 0 equazione dell’asse neutro.

N
A

My
Iy

N
A

My
Iy

N
A

Ne
²x A

N
A

e

²x

e

²x

_Calcolo delle tensioni massime in una sezione. 

Prendere un pilastro incastrato, con applicato uno sforzo normale N eccentrico.

Pressoflessione
 compressione eccentrica. 

Tensoflessione
 trazione eccentrica. 

 elaborando un sistema 
equivalente, si giunge alle 
seguenti conclusioni: 

z = y

z = x

z = y

z

yx

N

z

y

N

z

y

N

y

N
A

My
Iy

Mx
Ix

z

y

N
N*e

AN

XG

z
N

N*e
e
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z = –         1 – y

z = –         1 + y

z =         1 – y

z =         1 + y

 Per ottenere il risultato voluto, sostituire ai 
termini N, A, , e i valori in analisi senza 
cambi di segno; variare solamente il segno 
della y secondo la convenzione indicata. 

z

y

N
N*e e

N

z

y

N
N*e

e

N

z

y

N
N*e e

N

z

y

N
N*e

e
N

N
A

e

²x

N
A

e

²x

N
A

e

²x

N
A

e

²x

-esempio pratico- 

N = 10 tonnellate
A = 20*10cm = 200cm2

Ix = bh3/12 = 10*(20)3/12 = 6666,67cm4

2
x = Ix/A = 33,33cm2

x = 5,77cm 

? = asse neutro e tensione z al lembo superiore ed inferiore.

z =       + y

 (–10t / 200cm2) + (–10t *–5cm)*y/33,33cm2 * 200cm2) = 0 

 –10t / 200cm2 * (1 – (5cm*y/33,33cm2)) = 0 

 1 – (5cm*y/33,33cm2) = 0 

 1 – (5*y/33,33cm) = 0 

 5y/33,33cm = 1 

y = 33,33cm/5 y = 6,67cm 

N.b. l’asse neutro, rispetto all’asse bari-
centrico, è sempre antipolare al centro di 
pressione.

N
A

Ne
²x A

z

y

N

N*e

5cm 
N

y

x
20cm

10cm 

5cm 

centro di pressione (cp)

x
6,67cm

AN

XG

y

a.

b.
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 Metodo grafico per individuare la posi-
zione dell’asse neutro: 

Congiungere e con x, costruendo un 
triangolo rettangolo. Il punto di interse-
zione con l’asse y appartiene all’ asse 
neutro. 

yAN (asse neutro)= x
 2 / e

yAN : x 2 = x : e

 tale metodo permette di controllare 
subito se l’asse neutro cade o meno 
all’interno della sezione. 

È ora possibile calcolare le tensioni z al lembo superiore ed inferiore. E’ sufficiente verificare 
la sezione in ±y, e cioè in ±h/2, e cioè in ±10cm.

N.b. le distanze y sono prese dall’asse baricentrico al lembo superiore ed inferiore.

z (a) = –10t/200cm2 * (1 – (10cm * 5cm/33,33cm2))
= 0,025 t/cm2  trazione massima.

z (b) = –10t/200cm2 * (1 – (–10cm * 5cm/33,33cm2))
= –0,125 t/cm2  compressione massima.

x

AN

XG

y

x = 5,77cm 

y

N

AN

XG

0,025 t/cm2

0,125 t/cm2

z

Considerazioni:

- È intuibile dal principio che il valore di compressione sia più grande di quello di trazione, 
innanzitutto per sovrapposizione degli effetti ed in secondo luogo per la posizione 
dell’asse neutro. 

- Più il centro di pressione cp si allontana dall’asse baricentrico, più l’asse neutro si 
avvicina all’asse baricentrico. 

- Se il cp coincide con l’asse baricentrico, l’AN va all’infinito  si ha solo trazione 
compressione semplice. 

- Se l’asse neutro cade al di fuori della sezione, si avrà una situazione di questo genere: 

x

AN

XG

y y

z

AN
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D.4
TORSIONE

_Momento torcente in trave di De Saint-Venant. 

In un graticcio di travi, ciò che è flettente per una trave è torcente per la trave perpendicolare. 

La trave a sezione circolare, come quella in analisi, possiede il vantaggio della simmetria 
radiale  la sezione non esce mai dal piano di appartenenza, anche sotto l’azione di un 
momento torcente; una sezione rettangolare si ingobbirebbe, uscendo dal proprio piano. 

              configurazione di partenza            configurazione variata 

Mt = momento torcente, agente intorno all’asse z.
Mr = momento reagente.

(z) = z

dove:
-   =  angolo di torsione;
-   =  angolo unitario di torsione;
- z  =  asse della trave; 
- l  =  lunghezza della trave.

x

y

z

Mt Mt

Mr

l

Mt

variazione
media

variazione
massima

nessuna
variazione
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 L’angolo di torsione è funzione lineare della distanza z, ed è uguale a (costante che 
restituisce l’idea di come ruota un oggetto sotto l’effetto di un momento torcente) per la distan-
za z.

Pensando la trave come una pila di 
monetine, ogni moneta ruota in modo 
diverso e trasmette una tensione alla 
successiva.

Il centro resta fisso. La tensione cresce 
fino ad essere massima alla circonferen-
za. N.b. per le circonferenze, tutte le 
concentriche sono assi principali. 

Mt  = zs * r A

 integrale esteso all’area. 

Scomporre una tensione zs tangente alla 
circonferenza secondo x ed y, ottenendo

zx e zy.

I bracci di zx e zy sono generici, ma il 
verso delle due tensioni indica quale 
segno è necessario applicare zx è
discorde con la direzione x e quindi 
negativo, zy è concorde con y e quindi 
positivo.

Mt  =    ( zy x – zx y ) A momento torcente.

Mty

x R

zs

A

A

y

x r

zszy

zx

y

x

Approccio agli spostamenti di Neumann:
assegnare un campo di spostamento in
relazione a , vedendo come si modifica il 
tutto.

Ogni s è un vettore, appartenente al piano 
della sezione. Prendere un s qualsiasi e 
scomporlo secondo i vettori unitari u e v.

L’asse z è l’asse neutro per la rotazione
sapendo che le sezioni di una trave

cilindrica non escono dal loro piano, non 
si hanno componenti z w.

u (discorde con x) = – (z)*y = – zy

v (concorde con y) = (z)*x = zx

È ora possibile andare a verificare le deformazioni del sistema. 

Dilatazioni lineari specifiche: 

x =               =               = 0  la derivata di x rispetto ad y è pari a zero. 

y =               =              = 0  la derivata di y rispetto ad x è pari a zero.

z =               = 0  non si verificano azioni in z.

v

y

u

x

w

z

(– zy)

x

( zx)

y

y v

x u r

sv

u
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Variazioni angolari: 

xy =              +       =   +                 = z – z = 0

 sono le derivate di x rispetto ad x e di y rispetto ad y = 1, che quindi moltiplicate per una 
costante ( z) restituiscono la costante stessa.

xz =              +       =   +                 = – y

yz =              +       =   +                 = x

La relazione sostitutiva per un corpo lineare isotropo enuncia che, per un corpo lineare 
isotropo, le deformazioni trasversali sono legate alle tensioni longitudinali mediante il 
coefficiente G (vedi p.88).

xy = G xy = 0

xz = G xz = –G y
zy = G zy = G x

E quindi: 

Mt  =    ( zy x – zx y ) A =   (G x)x – (–G y) y A

Trasportando le costanti al di fuori del segno di integrale: 

Mt  =  G    (x2 + y2) A

v

x
u

y

w

x
u

z

w

y
v

z

(– zy)

y
( zx)

x

(– zy)

z

(0)

x

( zx)

x
(0)

y

A A

A

 L’integrale in A di x2 + y2 è il momento di inerzia polare IP per travi a sezione circolare.

IP =  formula del momento di inerzia polare, assimilabile a quella del
       momento di inerzia lineare. 

Sostituendo con la nuova simbologia: 

Mt  =  G IP

=   più forte è il momento, più grande è l’angolo di torsione.

GIP è la rigidezza torsionale. G in questo caso è il modulo di elasticità torsionale.

xz = –G y = – y

zy = G x = x

max = xz
2

max + zy
2

max = x2 + y2   = Raggio

R4

2

Mt

GIP

Mt

GIP

Mt

GIP

Mt

IP

Mt

IP

Mt

IP

Mt

IP
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_Momento torcente di sezioni cave (formula di Bredt). 

Caso A.
Prendere una sezione cava chiusa, una 
sorta di tubo. 

Secondo l’ipotesi di Greenhill le tensioni 
tangenziali “viaggiano” nella sezione 
come il flusso di un fluido  più 
l’imboccatura è stretta più il flusso è 
veloce, poiché si ha sempre la medesima 
quantità di fluido che la attraversa. 

b1 1 = b2 2

Le tensioni tangenziali si “inseguono”, 
possono essere sempre costanti nelo 
spessore, secondo le concentriche della 
sezione; si comportano, appunto, come 
un fluido. 

Tagliando la sezione in un punto qualsia-
si, si ha un diagramma tensionale del  tipo 
illustrato a fianco, tenendo sempre conto 
del fatto che lo spessore è abbastanza 
piccolo da considerare costanti le tensioni. 

Mt

b2

b1

2

1

Caso B.
Prendere una sezione cava aperta in un 
tratto.

 anche in questo caso le tensioni si 
inseguono, formando un diagramma delle 
tensioni a farfalla. 

Mt
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Analizzando il caso A:

prendendo il medesimo oggetto cavo con 
baricentro G, isolarne una porzione dc.

T è la risultante delle tensioni tangenziali 
appartenenti alla porzione.

 ogni porzione va ad equilibrare il Mt
complessivo.

 ogni porzione, quindi produce un 
piccolo momento torcente, la sommatoria 
dei quali è il Mt totale.

r1 ed r2 sono i bracci delle risultanti 1 e
2, perpendicolari alle risultanti, rispetto al 

baricentro G.

Il momento di ciascuna risultante sarà: 
1b1 dc * r1

2b2 dc * r2

1b1 e 2b2 sono uguali, per la 
sunnominata legge del flusso.

bmedio * r dc

Mt

.Gdc

dc

bc

T

.G
dc

dc

.
. .

.
2

1

r2

r1

b2

b1

N.b. in questo caso, r identifica la con-
giungente fra i lembi inferiore e superio-
re di dc ed il baricentro G.

Portando questa funzione al limite: 

bmedio  r dc  = Mt  totale.

L’integrale di r*dc è il doppio dell’area 
di tutti i triangoli, fatti dalle congiungenti, 
che costituiscono l’area della sezione. 

area media.

AM = r*dc = 2

AM = r2 = (r+b/2) 2

quindi:

zs  = legge di Bredt.

.G
dc .

.
zs

r
c

.G
r+br

Mt

2  * bmedio
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D.5
AZIONI TAGLIANTI

_Taglio in trave di De Saint-Venant. 

Quando il taglio (Ty) è eccentrico rispetto 
agli assi uscenti dal baricentro della 
sezione, diventa parte del momento 
torcente (Mt).

Si tratta del caso in cui il taglio 
agisce sugli assi principali di inerzia. 

Mx dà equilibrio al sistema. 
N.b. Il taglio è sempre associato al 
momento flettente. 

Mx = – Ty (l–z)

z =           *y  = –                  *y

yx

z

yx

a

b

l

Ty

x

y

Ty

Tx

Mt

Ty

Ty

y

z

Mx

l

Ty

Ty

y

z

z

Mx

Mx

Ix
Ty (l– z)

Ix
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_Trattazione di Jourasky. 

Ingrandendo un concio della suddetta trave: 

ab = corda qualsiasi che divide la 
sezione in due aree, AI ed AII.

z +           * dz

 sommare alla tensione z che esiste 
senza il concio dz la risultante delle ten-
sioni z dell’area sottesa alla corda.

È quindi possibile costruire un integrale. 

– z dA   + z  +            dz   dA  + yz dx dz = 0

      – z + z  +            dz   dA  +    yz dx dz = 0

z

zy

y

z

z

z

x

AII AII

z

x
0

b

AII

z

x
0

b

b.
a. zy

yz

dz
z

AII

x

y

z

b.
a.

zy

dz

AII

AI

Sostituendo e semplificando z nella prima parte dell’integrale:

z =           *y  = –                *y

– y   =   – y  + y    = y

y  dz  dA  + yz dx dz = 0

Trarre dal segno di integrale le costanti (N.b. l’integrale di yz in dx da 0 a b è pari a yz per 
la lunghezza dell’intera corda ab = b):

y *dA  = – yz b

è il momento statico Sx dell’area AII.

Sx(AII) = – yz b

yz =  – 

Quindi:

Ty  = zy dA zy = formula di Jourasky.

A

Ty Sx
Ix b

Mx

Ix
Ty (l–z)

Ix

x
Ty (l–z)

Ix
Ty
Ix

Ty l
Ixx

Ty z

Ix

AII 0

b

Ty
Ix

AII

Ty
Ix

Ty
Ix

Ty Sx(AII)

Ix b
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-esempio pratico- 

T = Pl *  *         = 

C = Pl *           * –       = – 

Alle estremità le saranno pari a zero  le dipendono dal momento statico Sx, che è il 
momento di una sezione compresa fra due corde.  si andrà a calcolare il momento statico 
nell’asse baricentrico per metà sezione.

b = b

Sx =  *        =

zy  =                 *       =           = 

y

x

l

A B 

P T+

Pl
M

–

P

z

y
C

T

12

bh3

h

2
6Pl
bh2

12

bh3

h

2
6Pl
bh2

h

b

bh

2
h

4

bh2

8

Ty 12
b bh3

bh2

8

3Ty
2bh

3Ty
2A

6Pl/bh2

6Pl/bh2

3.
2.
1.

3Ty /2bh

Verifica nel punto 1.
 si ha solo C.

Verifica nel punto 2.
 per effetto delle si verifica 

anche una T principale di tra-
zione.

Verifica nel punto 3.
 si hanno due principali di 

trazione e compressione, che  
si elidono perché uguali in 
modulo.

Considerazioni:

se z è a farfalla, zy è parabolico.

 il diagramma delle è formato sezioni paraboliche variabili. 

.
C

   b = T = 0.a = m = C.
6Pl
bh2

 .
       C

.
  a 

m.
.

       b
..C T

a = b = C.

m =.

..C T

3Ty
2A
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D.6
PRATICA

_Metodo di verifica delle tensioni ammissibili. 

Il metodo delle tensioni ammissibili pone come base per l’analisi le azioni caratteristiche, azioni 
che, nell’arco di un periodo di vita stabilito della struttura, hanno la probabilità del 95% di 
essere superate.

Analizzando l’azione della neve negli anni: 
 non è possibile prendere il valore 

medio, ovviamente troppo basso; si andrà 
a trovare un valore che viene superato, ad 
esempio, solo nel 5% dei casi, in modo da 
costituire un livello ragionevole, non 
troppo alto.  valori poco probabili ma 
possibili.

Ad esempio, si prenda un tondino di 
acciaio con applicato uno sforzo normale 
di trazione N.

 il materiale si deforma. Il grafico ha un 
andamento lineare fino ad un andamento
Fyk, poi si snerva, incrudisce e collassa.

 =

 = 

La nomenclatura delle barre “FeB44k” è uguale al limite Fyk = 44 kg/mm2 = 440 MPa o 
N/mm2 = 4400 kg/cm2. Fe sta per ferro, B per barre.

A tutto questo si pone un valore limite inferiore a Fyk.

ferro, ammissibile = 2600 kg/cm2.

98 99 00 01 02 03 04 05 06

98 99 00 01 02 03 04 05 06

valore
medio

valore di 
verifica

l

N N 

l
l0

N
A

Fyk

Ftk

fe,adm
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È chiaro che ci si riferisce solo allo stato elastico del materiale. 

E = fe,adm/  = 2,1 * 106 kg/cm2.

La verifica viene condotta per raffronto fra la n ottenuta e la fe,adm.

n fe,adm

_Metodo di verifica degli stati limite. 

Vengono applicati alle azioni caratteristiche dei coefficienti amplificativi. 

Carichi permanenti: 

Carichi accidentali: 

Per l’acciaio, Fyk è di 3818 kg/cm2.

10o/oo (dieci per mille) è il valore oltre il 
quale non è dato andare per l’acciaio nel 
sistema degli stati limite.  si tiene conto 
anche del materiale nello stato incrudente 
e plastico. 

2,8o/oo è un valore stabilito, poiché E, che 
dipende dal materiale, è ovviamente il 
medesimo in tutti i paesi. 

2,8o/oo 10o/oo

1
1,4

1,5  carichi principali
1,05  carichi secondari
0

Fyk
1,15

La flessione semplice, come noto, avviene dove non si ha taglio (  0) e si verifica momento 
massimo (  0).

+
max =             = * ymax

criterio di resistenza: adm

Raggiungendo il valore Fyk la non può più aumentare, e quindi il grafico cambia:

 nel metodo degli stati limite si tiene conto della riserva di resistenza del materiale in campo 
plastico. N.b. in ogni caso, la deformazione resta. 

M

T

z

y

Mmax 

ymax 

–

+

+
max

Mmax

W
Mmax

I

M
W

max max max 
(al limite di rottura). 
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_Casi di stati pluriassiali (ipotesi di Von Mises). 

Se nelle tensioni ammissibili si limita la n con una fe,adm, in caso pluriassiale si procede in 
modo analogo. 

C x T       C I T  , C II T

Per materiali isotropi si ha un campo di 
dominio quadrato, che determina le 
tensioni ammissibili per il materiale. 
Cercando un modello che descrivesse 
meglio la realtà, il Tresca formulò un 
grafico sostitutivo (vedi p.90-91).

II

I

T.

.
C

T.C .

adm

II

I

T.

.
C

T.C .

Analogamente al criterio di Tresca è 
possibile usare l’ellisse di Von Mises,
derivante da dati puramente sperimentali. 

I
2 + II

2 – ( I * fe ) adm

ipotesi di Von Mises.

II

I

T.

.
C

T.C .



TEORIE DI DE SAINT-VENANT

120

-esempio pratico- 

In caso di torsione pura con trave di Saint-Venant. 
z  0; zx  0; zy  0. 

2 + 2 + 2  = 3* adm

adm = adm/ 3

Per la reciprocità delle tensioni tangen-
ziali, le due xz e zx sono uguali, e x è
zero secondo il modello di De Saint 
Venant.

 quando una delle due è zero le due
sono sempre uguali.

Mt

 . 
C ( x/2)

.
  b ( x)

m ( zx).
.

a ( z)

( xz)  .
..II I

RR

a = b = C.

m.
R

45°

..II I

I = z/2 + R = z/2 +     ( z/2)2 + ( zx)2

II = z/2 – R = z/2 –     ( z/2)2 + ( zx)2

Quindi:

I
2 + II

2 – ( I * fe ) adm

z/2 +     ( z/2)2 + ( zx)2     + z/2 –     ( z/2)2 + ( zx)2    – ( I * fe ) adm

semplificando z
2 +  3 zx

2
adm

 il termine in radice è la sigma ideale id, che è la grandezza indice del pericolo da 
confrontare con la sigma ammissibile adm per verificare una struttura.

   . 
z/2

zx.
.
z

..II I

R

2 2
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_Verifiche e dimensionamenti. 

Per procedere con i dimensionamenti, è necessario conoscere le formule inverse dei teoremi 
di Navier, Jouraski, Bredt. In questo caso viene in aiuto l’ipotesi di Von Mises. 

id  = 2 +  3 2

Prendere sempre come modello la trave 
di De Saint-Venant. 

z  0; zx  0; zy  0.

N

=

id  = 2    =                 =            = | |   – adm adm

T

id  = 3

M

– adm id  = adm

N
A

N
A

2
N
A

N
A

z

yx

M
W

-esempio pratico- 

Prendere un telaio strutturale, analizzando 
una delle travi. 

Sezione in A (mezzeria).

- Il taglio T è nullo. 

- Non si hanno sforzi normali N.

- Non si ha momento torcente Mt.

- Esiste un momento Mx
+ positivo

(N.b. il piano posto è zy, quindi la 
rotazione avviene intorno a x).

Ponendo che le travi in analisi siano in 
acciaio, sezione HE: 

q

M ql²/24

T

ql²/12

 . 
       A

 .
       B

 . 
       A

 .
       B

 . 
       A

 .
       B

x

y

–

+

z

y

x

yb

hSa

e

e
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Mx = z * y dA z =            * y

formula di Navier, che descrive la flessione semplice retta (vedi p. 104).

 l’acciaio si comporta nello stesso modo a trazione ed a compressione, e la sezione è 
simmetrica in x. Quindi:

max =            * h/2

fe,adm

–  – fe,adm

 se la sezione non fosse stata simmetrica, si procederebbe a due diverse verifiche al lembo 
inferiore e superiore. 

Sezione in B (sull’incastro).

- Il taglio è Ty+ positivo.

- Esiste un momento Mx
– negativo.

A

Mx
Ix

Mx
Ix

M
W

M
W

x

y
–

+

z

y

 la trattazione svolta nella sezione A non è più valida, poiché interviene anche il taglio. 

Ty  = zy dA zy =

formula di Jourasky, dove: 

- Ty = taglio in y;

- Sx = momento statico dell’area 

sottesa alla corda b;

- Ix = momento di inerzia di tutta la 
sezione;

- b = corda qualsiasi, che assume 
diversi valori.

Il diagramma delle  ha grossomodo questa forma. 

A

Ty Sx
Ix b

x

y
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Quindi, la sezione che verrà verificata sarà la sezione A, la più sollecitata.

vengono scelti tre punti per la verifica: 1 al lembo superiore, 2 subito sotto l’ala superiore e
3 in mezzeria.

Verifica nel punto 3.

id  = 2 +  3 2

=

b = Sa

IxA1 =           + (eb)*

Ix2(A2) =

Ixtot = 2            + 2  (eb)*                +

Sx = (eb)*            + Sa           * 

x

yb

hSa

e

e
  . 
         1  . 
         2

  . 
         3

be3

12
h-e

2

Sa*(h-2e)3

12

2

be3

12
h-e

2

2
Sa*(h-2e)3

12

h-e

2
h-2e

2
h-2e

4

h

Sa

e

b

A1

A2 .
         3

Ty Sx
Ix b

Verifica nel punto 2.

id  = 2 +  3 2

=

=              *

Ixtot  idem come sopra.

b = Sa

Sx = (eb)*            il momento statico diminuisce gradatamente.

Verifica nel punto 1.

id  = 2 +  3 2

=  idem come sopra.

=              *

Ixtot = idem come sopra.

b = e

 secondo la teoria del flusso delle , il momento statico gira b diviene e, e quindi è 

sufficiente metà sezione per l’analisi delle .

h-e

2

h
Sa

e

b

A1  .
         2

Ty Sx
Ix b

Mx
Ix

h-e

2

h
Sa

e

b

A1  .
         1

Ty Sx
Ix b

Mx
Ix

h

2
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E.1
QUALITA’, VINCOLI ELASTICI

_Qualità dell’equilibrio. 

Condizione necessaria per l’equilibrio di un sistema, come noto, è che la sommatoria delle 
forze agenti e reagenti e la sommatoria dei momenti siano pari a zero. Nell’instabilità 
dell’equilibrio si analizzano alcuni casi in cui questa necessaria condizione non è sufficiente. 

Instabilità = carico di punta.
Il sistema deve essere in equilibrio nella sua qualità  non tutti gli equilibri hanno la 
medesima qualità. 

Esempio: bastone rigido incernierato. 

caso A: la struttura è labile, ma caricata in 
questo modo risulta in equilibrio. 

Hi = 0 
Vi = 0   VA  – P = 0   VA = P 
Mi = 0

caso B: anche il secondo esempio è in 
equilibrio, ma la qualità dello stesso è 
maggiore.

 l’asta sotto l’effetto di azioni orizzon-
tali (perturbazioni) può muoversi, ma alla 
fine ritorna nella configurazione standard. 

 equilibrio stabile.

Se l’oggetto, in caso di perturbazioni, si 
allontana sempre più dalla configurazione 
di partenza l’equilibrio è detto instabile.

A

P

l

B

VA

A

P

l

B

VA

A B 

A

P

B
A

P

B
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Anche in questo caso la struttura è labile, 
ma regge. 
Assegnando una perturbazione, l’oggetto 
si sposta un po’ e poi si ferma 
equilibrio indifferente.

 non tutti gli equilibri sono uguali. Per sapere di che equilibrio si tratta bisogna assegnare 
una perturbazione. Ma comunque, a priori, è necesasrio verificare che l’oggetto sia in 
equilibrio.

Ma bisogna tener conto che i materiali sono elastici, non rigidi. 
- sistemi rigidi  l’equilibrio è un fatto posizionale, non dipende dall’entità della forza; 
- è necessario controllare che i vincoli siano ben disposti. 
- sistemi elastici  controllare il  punto critico. Dipende dal fatto che il sistema sia: 

    - ad elasticità diffusa (in ogni punto); 
    - ad elasticità concentrata nei vincoli. 

_Molla rotazionale. 

Il vincolo è formato da tre parti: una 
cerniera, un incastro ed una molla. 
Non è un vincolo perfetto, in cui i mondi 
della cinematica e statica sono separati. 
In questo caso cinematica e statica sono 
collegate fra loro. 

Cinematica statica
u = 0  H  0 
v = 0  V  0 

 = M/k  M = k 

 la struttura può ruotare fino ad un 
valore stabilito in base alla rigidezza k
della molla.

M  =   k
rigidezza rotazionale applicata alla 

molla.

A B 
P Riprendere il sistema di partenza, ponen-

do una molla rotazionale. 

Hi = 0 
Vi = 0   VA  – P = 0   VA = P 
MA = 0

Cinematica linearizzata.

Assegnare una perturbazione sufficiente-
mente piccola da confondere l’arco con la 
tangente.

Il carico viene ridisegnato con lo stesso 
modulo, direzione, verso.  

Hi = 0 
Vi = 0   VA è sempre = P 
MA = 0    M – P*  + k*  = 0

P è il momento instabilizzante Mi
k è il momento stabilizzante Ms

 = l

Ms > Mi equilibrio stabile

Ms < Mi equilibrio instabile

Ms = Mi condizione critica, che si andrà a calcolare.

A

P

l

B

VA

A

P

B

P

k
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Riprendendo il calcolo del momento in A:

– Pl  + k  = 0 
 (– Pl + k) = 0 

 questa formula può essere uguale a zero in due casi: 
- se  = 0  matematicamente questa soluzione viene chiamata banale, poiché se è

zero la struttura non ha subito perturbazioni.
- se (– Pl + k) = 0  formula da analizzare.

PCR = k/l  risolvendo questa uguaglianza si trova il carico critico per la struttura.

N.b. k/l non è il punto dopo il quale la struttura collassa del tutto.

Cinematica finita (si considera l’effettiva deformazione) 

MA = 0    M – P*  + k*  = 0

– Pl sen  + k  = 0 

PCR( ) = k /l sen

- per  = 0 

                     = 1 

PCR( ) = k/l

- per  = /2
PCR( ) = k/l  * ( /2)/1

- per  = 
/sen  = e – sono gli asintoti del grafico che esprime le posizioni di equilibrio 

fra Ms ed Mi.

l cos

A

P

B
P

k

 = l sen

l

lim
0 sen

k/l  punto di biforcazione dell’equilibrio.

 più l’asta ruota, più P non rientra nello 
sforzo normale e va nel taglio. 

il carico di punta è uno sforzo normale 
 per il calcolo è necessaria la sola com-

ponente normale. 

_Molla estensionale. 

Cinematica statica
u  0  H = 0 
v = V/k  V = kv

 0  M = 0 

v =  V/k
rigidezza estensionale della molla. 

Hi = 0   HA – HB = 0  HA = HB

Vi = 0   VA  – P = 0   VA = P 
MA = 0

Cinematica linearizzata.
Applicando una perturbazione:  HB = k* ,  = l

MA = 0    M – P*  + HB*l = 0
P  = Mi
HBl = Ms

– Pl  + (kl )*l = 0 
 (– P + kl)*  = 0 

PCR( ) = kl

P

/2– – /2

.
  k/l

A

P

l

B

VA

HB

HA

A

P

B

P

l

HB= k*
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Cinematica finita.

MA = 0    M – P*  + HB*l cos  = 0

– Pl sen  + k* l cos  = 0 
– Psen  + kl sen  cos  = 0 
sen  (– P + kl cos ) = 0 

PCR( ) = kl cos

- Per  = 0 
PCR( ) = kl *1 = kl

- Per  = /2
PCR( ) = k/l *0 = 0

- Per  = 
 La struttura si rompe o si è già rotta. 
 la struttura non accetta più carico, ci 

avvisa con grandi spostamenti che sta per 
spaccarsi e poi si rompe del tutto. 

Quando le aste della struttura possono 
sbandare indifferentemente da entrambi i 
lati è possibile parlare di aste perfette.
In caso di sistemi imperfetti si parla di 
instabilità per divergenza  le aste 
partono già ruotate di un valore 0.

Pl ( 0 + )= k

l cos

A

P

B

P

 = l sen

l

P

/2– – /2

  kl.

P

_Concio elastico. 

È una sorta di cerniera interna. 

La struttura può piegarsi indifferentemente 
da entrambi i lati, con la stessa forma di 
deformazione. 

Ponendo due conci elastici all’interno 
della struttura, si avranno due possibili 
modi di deformazione: 

primo metodo di deformazione 

secondo metodo di deformazione 

Considerando la trave come costituita 
interamente da conci elastici, si ottengono 
le modalità di deformazione illustrate a 
fianco.

A B P

A B P



INSTABILITA’ DELL’EQUILIBRIO

130

E.2
CARICHI CRITICI

_Carico critico euleriano. 

Prendendo il consueto concio di trave. 

V(Z) = linea elastica o abbassamento.
V’(Z) = (Z) = rotazione.
V’’(Z) = ’(Z) = 1/R = curvatura.

1/R = – Mi/EI Mi = R/EI

Si avrà un momento stabilizzante Ms dato
dall’elasticità della trave.

Ms = EI/R  l’opposto di Mi.
Ms = EI*V’’(Z)

Ms è la capacità di opporsi alla rotazione 
relativa delle facce del concio, ed è legato 
alla curvatura. 

MR = P*V(Z)  momento instabilizzante. 

Quindi:

P*V(Z) + EI*V’’(Z) = 0 carico critico euleriano.

P/EI*V(Z) + V’’(Z) = 0
ponendo a2 = P/EI

a2V(Z) + V’’(Z) = 0

Saltando la parte di calcolo attraversante la trigonometria, viene presentata direttamente la 
formula già semplificata. 

V(Z)

P
z

y

MsMs

dR

dR

MiMi

dz

dz
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V(Z) = C1 sena z + C2 cosa z

Per risolvere questa formula è necessario porre due diverse condizioni al bordo: 

a. per V(Z=0) = 0 C1 sena0 + C2 cosa0 C10 + C21 C2 = 0

b. per V(Z=l) = 0 C1 senal + 0cosal
esistono due soluzioni per cui il tutto sia uguale a zero: 

C1 = 0 (matematicamente banale) 
senal = 0  è uguale a zero quando al = n

a = n /l

a2 = n2 2/l2

P/EI = n2 2/l2

PCR =

Quindi il carico critico dipende: 
- dal modulo elastico 
- dal momento di inerzia 
- dalla lunghezza della trave 

2 3

1

-1n2 2EI
l2

senx

x

n è il numero di onde o semionde che la trave può produrre sottoposta a carico critico. 

PCR = =

PCR = =

PCR = =

Per le verifiche viene usato il carico critico più piccolo: 

PCR =

32 2EI
l2

22 2EI
l2 P

12 2EI
l2

9 2EI
l2

4 2EI
l2
2EI
l2

2EI
l2
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È possibile individuare quattro modi di deformazione per strutture sottoposte a carico critico. 

modo I              modo II modo III          modo IV
l0 = 2l l0 = l l0 = l/ 3 l0 = l/2

con l0 = lunghezza di un’onda. I valori indicano quante volte, rispetto ad l, è grande un’onda 
intera. Per il calcolo, basta sostituire tali valori nella precedente formula:

  PCR(1) = PCR(2) = PCR(3) = PCR(4) =

Quindi, il carico critico è pari a: 

PCR =

l l l l

2EI
4l2

2EI
l2

3 2EI
l2

4 2EI
l2

2EI
l02

l0

l

l0

l

l0

l

l0

l

In ogni caso, quanto detto finora si applica a travi snelle.

_Significato di tozzo e snello. 

Esempio: verifica di un pilastro. 

Ny = valore di rottura a compressione.
 = spostamento in generale.

Se tozzo, il pilastro viene verificato solo a 
compressione.

P < Ny

Se snello, si verifica tutto, anche il carico 
critico di punta. 

P < 

La snellezza di una trave è pari a: 

 =           ,      con 2
min = Imin/A

il è minimo poiché il carico critico 
preso in esame è il più piccolo.  
L’inerzia restituisce, come noto, l’idea del 
modo in cui lo sforzo normale si distribui-
sce nella sezione. 

 PCR =              = 

 porre un termine y che deriva dalla proiezione di a sull’asse y.

se  > y = verificare P <

se  < y = verificare solo a compressione, P < Ny

N (P)

Ny

2EI
l02

l0
min

2E* 2
min A
l02

2EA
2

P
Ny

y

elementi tozzi elementi snelli 

a.

2EA
2
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Nel punto a l’asta può sia sbandare sia rompersi per compressione.

Ny = y =

In ogni caso, la snellezza è solo un fatto geometrico. 

N.b. il grafico della pagina precedente è 
formato dalla somma di: 

rottura per schiacciamento 

+

rottura per instabilità 

=

intersezione dei due domini. 

2EA
2

EA
Ny

Ny

Ny

-esempio pratico- 

E = 210000 [Mpa] 
yC = 275 [Mpa] 

A = 2502 – 2402 = 4900 [mm2]

I = (2502 – 2402)/12 = 4,904*107 [mm2]

 = I/A = 100,042 [mm] 

Ny = A* yC   4900*275 = 1347 [kN]

 = l0/l   2l/   2*3000/100,042 = 5,992 [n] 

y = =     210000*4900/1347500 = 86,82 [n] 

A

P

h = 3m

B

EA
Ny

5mm

250mm
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