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Questa raccolta di appunti non ha pretese di esaustivita nei confronti di una materia, come la meccanica strutturale,
complessa ed articolata. E’ un compendio delle nozioni base della disciplina che sono di ausilio ad uno studente che si
confronta con la stessa per la prima volta.

Gli argomenti, sviluppati consequenzialmente, cercano di seguire un iter logico che porti il fruitore ad uno studio lineare
dell'argomento, dalle basi ai temi pil complessi; dalla teoria dei vettori, come modello meccanico delle azioni, al modello
geometrico di trave e semplici sistemi di travi, al concetto di isostaticita ed iperstaticita, condizioni di equilibrio e congru-
enza, sino a giungere a concetti elementari della meccanica dei continui. Inoltre, sono stati inseriti richiami di matematica
e geometria ove necessario, al fine di non lasciare dubbi su quanto viene dimostrato di volta in volta. Anche gli esercizi
svolti contengono talvolta precisazioni e metodologie utili, non affrontate in sede teorica.

Si auspica, quindi, che queste poche pagine possano rendere il mondo della meccanica strutturale meno ostico per chi
lo affronta, e forse far nascere passione per la materia.

Questi appunti, redatti da Paolo Angelozzi, contengono traccia delle mie lezioni per i corsi di Meccanica Strutturale 1 e
Meccanica Strutturale 2 e possono rappresentare un valido strumento per gli studenti che come Paolo si avvicinano alle
tematiche della meccanica strutturale. E’ per me motivo di orgoglio vedere come I'impegno e la costanza di Paolo hanno
permesso di mettere a punto questo valido supporto al programma che svolgo nel corso di Laurea triennale in Scienze
dellArchitettura.

Antonella Cecchi
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STATICGA DELLA TRAVIE




A1
TEORIA DEI VETTORI

\EATICA DELLA TRAVE

_Vettori liberi.
Un vettore € un modello matematico utilizzabile per la rappresentazione di azioni meccaniche.

E caratterizzato da:
- unmodulo
- una direzione (retta d'appartenenza al vettore)
- unverso (da A aB)
Quindi un vettore & un segmento orientato dotato di modulo, direzione e verso.
Il vettore viene indicato con una lettera minuscola sottolineata u, o come differenza fra i punti
definenti il modulo (es. A-B).

A

Dati due vettori vl e v2 - v
& possibile procedere a
diverse operazioni.

Vettore somma.
Si intende ridurre questo sistema di vettori ad un sistema di un unico vettore equivalente,
risultante dei due vettori.

metodo A (il parallelogramma)

a. far coincidere i punti di partenza dei due vettori

b. tracciare le rette direzionali di v1 e v2

c. tracciare le parallele alle rette passanti nei punti finali dei vettori

d. tracciare, dalle partenze dei vettori, un vettore fino all'intersezione fra le due nuove rette
-> si ottiene v3, risultante dei due vettori.

metodo B
traslare i vettori v1 e v2 nelle rispettive terminazioni, trovando la risultante.
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Vettore differenza.
Graficamente, corrisponde alla diagonale minore del parallelogramma.

vi=vl +v2
v2=v3-vl
v4
A. vl B.
v2 -vl

Prodotto di un vettore per uno scalare.
Dati il vettore v ed il numero reale A, il prodotto v*A fra il vettore e lo scalare pud restituire:
- per 2>0 un vettore con verso concorde a quello di partenza
- per A<0 un vettore con verso opposto
- per 0<A<1 un vettore piu piccolo di quello di partenza, verso concorde
- per2>1 un vettore piu grande di quello di partenza, verso concorde

Prodotto scalare (o prodotto interno).

Ogni vettore, idealmente posto in un piano cartesiano, possiede una componente orizzontale
ed una verticale; per definirle si associano agli assi =« due versori unitari i e j. Due versori
unitari non dipendenti linearmente sono la base per individuare ogni vettore del piano.

1<
I
N
N W

v=2j+3i

Rappresentazione trigonometrica:

v sena

\ 2 2
Vv =\|Vvsena + v cosa
vV cosa

prodotto scalare = vettore forza * vettore spostamento = lavoro = un numero k.

E*u=k
O
F vettore forza
3
E=1,
B u vettore
spostamento
F=3i-2j
u=2i
F *u=3i*2i — 2j*0j = 6 (i versori, essendo unitari, valgono 1).

In sostanza il prodotto scalare restituisce I'entita del vettore, € la componente di un

secondo la direzione (espressa in seno e coseno) di un alfro vettore.

veftore

Nel piano: \
7
i*i (leggasi “i scalare i")
= componente del modulo per coseno di 0 .
=1*1=1. Il .
1 P€
1*j (leggasi “i scalare j")
= componente del modulo per coseno di /2
=1*0=0.
-> il prodotto scalare di vettori ortogonali fra i i K
loro & zero. ; o i K
1*1=1 1*0=0 0
ipogm J% J*k
-esempio pratico- 10=0 1*1=1 0
k*i k*j k*k
i=1 i=3 0 0 1
vi=|j=2| va=|j=1
k=1 I
? = Determinare f'in modo che i due vettori siano ortogonali.
vl *v2=0
li*3i+2j*(-1j)+ 1k *f=0
3-2+f=0
f=-1




Prodotto vettoriale (0 prodotto esterno).
Dati due vettori v1 e v2, il prodotto vettoriale v1 A v2 restituisce un vettore ortogonale ai due
vettori di partenza.

i i k
i[ iAi A ] Ak
0 +1 -1
i| JAd JAj JAKk
-1 0 +1
k| kAi kAj | kAKk
+1 1 0

_Vettori applicati.

Nelle strutture si parla di vettori applicati (siano essi forze o spostamenti), i quali non possono
essere spostati liberamente nello spazio, ma solamente secondo la loro retta d’azione. In una
struttura, inoltre, le forze devono essere in equilibrio, e cioé avere uguale modulo, uguale
direzione ma verso opposto.

O

Fy F; Fy

a b

E’ evidente che per equilibrare il sistema servono la risultante [R] delle forze in gioco ed il

braccio di applicazione delle forze.
T . F, _a
F 1-4a F 2. b F2 b

In questo modo & possibile spostare gli assi di applicazioni delle forze, aggiungendo un
momento di trasporto creato dalle forze di partenza.

F ...............

momento = forza [F] * lunghezza [/] I p
-> coppia di forze uguali in modulo A F

e direzione ma opposte in verso. pE—

N.b. le forze si misurano in Newton [N], ed i momenti in Newton per metri [N*m]

\EATICA DELLA TRAVE

-esempio pratico (pilastro con trave a sbalzo)-

In questo modo si ottiene un sistema equivalente a quello di partenza, ovverosia un sistema
che ha gli stessi effetti di quello iniziale.

E possibile ottenere la risultante complessiva del sistema (Rt) traslando solamente i vettori
lungo la loro retta d'azione, operazione lecita con i vettori applicati.

Ripetendo, qualsiasi sistema pud essere ricondotto ad un sistema equivalente in un asse
parallelo, con I'aggiunta di un momento di trasporto; ma e necessario prendere la distanza
{ ortogonale alla retta d’azione della forza.
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. . A A
-esempi pratici-
esempi pratic A . .
F F F 2F
l { l {
F
F F F
A v B C v v D
F »
4 {
F »
E. F.

A # B due forze producono un momento @ applicato nel baricentro

A =C due forze si elidono

A =D le forze producono due momenti @@ opposti che si elidono. Rimane la
forza F applicata come in A g

A #E differente retta d’azione della forza

A =F uguale retta d'azione

_Poligono funicolare.
Metodo grafico per l'individuazione della risultante e dell'asse centrale di vettori applicati.
Dati tre vettori v1, v2 e v3

/| PN

a. trattare i vettori come fossero vettori liberi e trovare la risultante.
b. scegliere un polo arbitrario O.
c. tracciare le congiungenti con i poli dei vettori.

N.b. ad esempio, v1 & anche uguale al percorso delle sue congiungenti.

d. riportare, partendo da un punto qualsiasi, le parallele alle congiungenti sulle rette d’azione
dei tre vettori.

A C

e. prolungare d1 e d4, ripetendo la precedente operazione per un paio di volte; si ottengono i
punti per cui passa l'asse centrale del sistema (Ac).

- Dati due vettori paralleli concordi, 'asse centrale € parallelo alla direzione dei vettori e
cade fra di essi, pil prossimo al vettore possedente maggior modulo.

- Dati due vettori paralleli discordi, I'asse centrale cade all'esterno dei due vettori, piu
prossimo al vettore possedente maggior modulo.




A.2
VINCOLI ED EQUILIBRIO

\EATICA DELLA TRAVE

Travi e pilastri sono oggetti monodimensionali, e cioe oggetti con
una dimensione predominante = le dimensioni della sezione

sono piccole se confrontate con la lunghezza, e quindi P g sezione
approssimabili ad una linea passante per I'asse baricentrico o~

dell'oggetto = modello monodimensionale = linea congiungente <G

i baricentri delle diverse sezioni. " Asse longitudinale

(luogo geometrico dei
baricentri delle sezioni)

Setti e pannelli necessitano invece di un modello bidimensionale,
basato sulla superficie media (luogo geometrico dei baricentri
dello spessore).

Esempio di schematizzazione strutturale:

L1

Il problema sorge nelle giunzioni fra elementi (travi, pilastri, suolo) -> vengono post| de| vincoli
al moto rigido dell'oggetto, determinando mowmentl leciti ed illeciti = il vincolo espleta delle
azioni uguali e contrarie a quelle che agiscono sulla struttura, neutralizzandole - reazione.

Le strutture affrontate d’ora in poi saranno quindi ferme ed in equilibrio.

_Gradi di liberta nel piano.
nello spazio = 6 (tre traslazioni, tre rotazioni)

nel piano = 3 (due traslazioni, una rotazione) M
N e
H
u = spostamento parallelo all'asse = azioni  azioni azioni
v = spostamento parallelo allasse " verticali  orizzontali di rotazione

= rotazione intorno all'asse z

¢
%\ 0 VT T §q)

§ = CONVENZIONE POSITIVA >
@ @ @ (antioraria)




VINCOLI ED EQUILIBRIﬂ

_Alcuni tipi di vincolo. ‘ - Biella
j impedisce lo spostamento verticale ed in parte quello
- Appoggio o carrello (vincolo semplice bilatero) ! orizzontale; non impedisce la rotazione.
impedisce che l'oggetto trasli secondo una direzione, ;
vincolando un grado di liberta. i cinematica statica
; 0< u <K H = fu
cinematica statica v = 0 V # 0
u # 0 H = 0 ¢ # 0 M = 0 7
v o= 0 «incognita
o # 0 M = 0
L’appoggio puo espletare una reazione uguale e contraria l F
alla forza agente. - Doppio pendolo (due bielle vicine in parallelo)

impedisce lo spostamento verticale ed in parte quello

N.b. quando un oggetto & “appoggiato” ad un altro non lo compene- orizzontale; impedisce anche la rotazione.
tra ma neanche puo staccarsene = vincolo “bilatero”.

. cinematica statica
F 0< u <K H = Afu
v =0 vV # 0
¢ =0 M # 0

- Cerniera (vincolo doppio)
impedisce due traslazioni, vincolando due gradi di liberta.

cinematica statica

u =0 H # 0 incognite _Tipi di strutture.

v ; 8 1\\//[ i 8 Controllando il rapporto fra gradi di liberta della struttura e numero dei vincoli, & possibile
® =

individuare tre tipi di struttura:

La cerniera espleta due reazioni uguali e contrarie alle

A 2101 . - Se GdL struttura > n.vincoli > struttura labile
forze agenti; non espleta reazioni alla rotazione.

- Se GdL struttura = n.vincoli = struttura isostatica
- Se GdL struttura <n.vincoli = struttura iperstatica

N.b. la verifica dell'iperstaticita di una struttura dipende dalla posizione dei vincoli e da quali

- Incastro (vincolo triplo) gradi di liberta impediscono.

vincola tutti i gradi di liberta, reagendo con una coppia di

forze.
cinematica statica
u = 0 H # 0 incognite
v =0 V # 0 '
o =0 M # 0 7
Struttura labile Vincoli ben disposti
L'incastro espleta tre reazioni uguali e contrarie alle forze agenti. (impediscono anche la rotazione)




| vincoli trattati finora sono detti lisci (si prescinde da qualsiasi fenomeno di attrito) e bilateri
(impediscono lo spostamento nella direzione della reazione e nella sua contraria) > Ad
esempio, in un oggetto appoggiato non si pud verificare né la situazione A (compenetrazione
di una superficie), né la B (distacco dalla medesima).

_Linee d’azione delle reazioni nei vincoli.

Nell'appoggio sono noti il verso e la direzione della reazione,
poiché il medesimo impedisce unicamente gli spostamenti
perpendicolari al pattino.

La cerniera non espleta reazioni di tipo momento. La linea
d’azione delle reazioni passa sicuramente per il punto di cer-
niera, ma non se ne conosce a priori il coefficiente angolare.

Nell'incastro la linea d’azione delle reazioni non passera per il
vincolo; non & possibile conoscerne a priori punti noti ed inclina-
zione.

\EATICA DELLA TRAVE

_Equilibrio di una struttura.
Una struttura si dice in equilibrio quando le forze agenti sono bilanciate da reazioni uguali e

contrarie. Tale condizione, comunque, & necessaria ma non sufficiente; ad esempio, la
seguente struttura & in equilibrio, ma risulta labile.

lF

w1
A\

N
N

o=
o=

E possibile procedere al calcolo solo dopo aver appurato l'isostaticita della struttura in analisi
(GdL = n.vincoli).

In sostanza, per far si che una struttura sia in equilibrio le sommatorie di tutte le forze ed i
momenti agenti su di essa devono essere pari a zero.

¥Fi=0 -> Fi=F(agenti) + F(reagenti)

IMi=0 > Mi= M(agenti) + M(reagenti)

Da queste equazioni derivano le tre equazioni fondamentali della statica:

YHi = 0

-> |la sommatoria delle azioni orizzontali deve essere pari a zero

Vi = 0

-> |la sommatoria delle azioni verticali deve essere pari a zero

Mi = 0

-> la sommatoria dei momenti deve essere pari a zero




-esempio pratico-

7

VINCOLI ED EQUILIBRIﬂ

E possibile procedere mediante due sistemi di risoluzione: grafico ed analitico.

Nel sistema grafico si procede, innanzitutto, disegnando un sistema equivalente alla struttura
di partenza -> si ridisegna la struttura, e mediante la linea delle pressioni si trasportano le
forze nei vincoli, determinando in seguito le reazioni che il vincolo espleta.

N

Linea delle pressioni
dove agisce I'unica forza
presente nel sistema
(c.v.d. non passante per
lincastro)

Nel sistema analitico si applicano le tre equazioni fondamentali della statica alla struttura,

sostituendo il vincolo con le reazioni che pud espletare.

d

THi=0 >

TVi=0 > V-F=0 >
IMi=0 > M-F* =0 >M=F/|

N.b. il punto di riferimento per il calcolo del momento ¢ l'incastro.

_Esercizio n.01

2Hi=0

H-F=0 > [H=F
2Vi=0

V=0

2Mi=0

M-F*(/2=0 >

T

\ ”
L 2

L ”

| 2




7 F
_Esercizio n.02 45°
2Hi=0
H-FA\2=0 > -

4

2Vi=0
V-FA2=0 >
2Mi=0

M-FA2* =0 >

FA2
M m le/zl
no :F/\/2
A%

\EATICA DELLA TRAVE

_Esercizio n.03

2Hi=0
Hpo—FA2=0 >
2Vi=0

VaA—FN\2+Vg=0

>Ma (calcolo del momento in A) =0

M — FA2*0/2 + Vg*i=0 > M= F/2V2 — Vy!

9q
> Va=FA2—F2\2 >V, =F2\2)

Considerazioni

La linea delle pressioni passa per
entrambi i vincoli = si hanno due linee
delle pressioni. Per determinarle si parte
dell'appoggio, la cui direzione della
reazione € nota, individuando ;
lintersezione fra Lp; e linea d'azione
della forza e la cerniera sono i due punti
che determinano la

Per le reazioni si costruisce il “parallelo-
gramma” allinverso, utilizzando le due
rette direzionali Lp1 ed Lp2.

N.b. linclinazione ed il verso di Ra
permette di ipotizzare, senza procedere
alla soluzione analitica, il verso di V5 ed
Ha.

F
A 45°
7
/2 2
2
Fa
- F
45°
02 2
2
Ra
F
A 45°
Ra f‘
2 2

2 2

7
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_Esercizio n.04 _Esercizio n.05

2Hi=0 2XHi=0

Hy—FA2=0 > [Hy=FA2 H-FA2=0 > [H=FA2
2Vi=0 2Vi=0

Va-FAN2+Vp=0 V-FAN2 =0 > [V=F\2
>Ma=0 4 2o >Mi=0

M — FN2#30/2 — FN2*//2 + Vp*2/ = 0 L M — FA2%20 + FA2%20

> M =2F/N2 - 2Vp!
> |Vp = FA2
>

Lpl validadaDaC
Lp2 validadaCad A

)

Considerazioni

La soluzione analitica conferma quanto
gia appurato mediante il metodo
grafico, e cioé che la cerniera espleta
solamente una reazione orizzontale.

2

/2

FA2

20 FA2

Ha

A B lF/\/Z
Va FA2 |

Diagramma di corpo libero

Si ridisegna la struttura, senza vincoli,

C i X . ’
" mettendo al posto delle incognite le 20

reazioni calcolate.

K {
-
<
<

=

~

2

o

<>

<
]

1 FA2
20 FA2

{ 2 2




_Esercizio n.06

2Hi=0
Hpo—FA2=0 >[Hy=FN2]
2Vi=0

—VaA+Vg—FA2=0

>Ma
M — F/N2*30/2 + Vg*{
> M =3F/2V2 — Vg!

> Vs = 3¥2\2

> V. =3F2V2 - FA2
>V, =F2V2

Lpl validadaCaB
Lp2 validada B ad A

7 %

2 Rp

o~

Rp
4 o : R
VAl F/xlzl
Hy B FN2
A T C
Vs
{ /2
FI2\2 F/\IZl
FA2 J B 2
A T C
3F/2\2

\EATICA DELLA TRAVE

_Esercizio n.07

2Hi=o0
Hy—FA2=0 >[Hy=FN2]
2Vi=0

~VA—FN2+Vc=0

XMaA=0

M — FN2% — FN2*50/2 +
+V*20=0 > M =T7Fl/2N2 - 2V(!
>

>

R

Ra

Lpl validadaDaC RO
Lp2 validada C ad A l 0.7 e
Va ’ H
A B
Ha o
FA2
C
Ve
‘ 2
) ’ ¢
A B
FA2
FA?2
C
TF/4N2
/ 7 02
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%
_Esercizio n.08 _Esercizio n.09
2Hi=0 { SHi=0
Hy—FAN2=0 - [Hy=FA2 H=0 allJJ 1] |~
XVi=0 XVi=0 , "
VaA—FAN2+Ve=0 V-qll2=0 > V= q/2
XMa=0 XMi=0 |
M — FA2*[+ Vc*20=0 l l 12 M — q//2*50/4 =0 5q/%/8
> M:FX/\/szVC@ F Re : > M=5q52/8 E
> Ve =F2\2 q//2 a2 |,
S Va=F2\2 Ry 71 v
Lpl validadaCaB )
Lp2 validada B ad A ; ¢ w2
i m ﬂ
i { >
: H ,
La soluzione di questo esercizio pud v q'/2 )
essere addizionata a quella del precedente 1
- in caso di molteplici forze agenti il Y
sistema puo essere scomposto ed analiz-
zato per parti. ? 2

2

sq.ﬂ,Z/m

FA2 FA2
A2, A LFNZ m, ° LFNZ q//2 qaz |y,

F/2\2 Va

~

F/2\2 Ve

0 0 i) 0 0 2
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A. 3 Come viene sollecitato ogni punto della trave? Rt Meoeooes .

CARATTE RlST|CHE DI SOLLEC|TAZ|ONE La materia trasmette le forze da un punto all'altro

fino a farle giungere nei vincoli. E necessario quindi
analizzare le caratteristiche di sollecitazione interna
della trave.

Divedendo la trave in n sezioni, ogni sezione della O O
trave risulterebbe come ‘“incollata”, solidale alla @

successiva. Ad esempio, immaginando di sorreggere

una pila di libri, spingendo ai lati rimane unita, ma se DI:I:I
la forza viene meno il tutto collassa.

Nell'analisi viene idealmente considerato un concio
di trave, e cioe una parte di trave compresa fra due

sezioni della stessa, eseguite a distanza « fra loro.

@

sezione

_Convenzione positiva in un concio di trave.

_@_

Asse longitudinale

A

- Sforzo Normale - due forze uguali in direzione ed opposte in verso; azioni lungo
I'asse della trave di trazione (positive) e compressione (negative).

- Taglio Ti : tensioni tangenziali, positive se il concio ruota in senso orario.

il momento flettente € positivo se I'azione tende le fibre inferiori della trave >

- Momento Flettente () due coppie di forze uguali ed opposte; C /\'/\v)




CARATTERISTICHE DI SOLLECITAZIO@

E’ possibile tradurre in forma analitica e grafica le caratteristiche di sollecitazione interna.
Prendendo ad esempio la seguente struttura:

<—
e
ov]

/2 /2

a. decidere un verso di percorrenza dell'oggetto, per esempio da A a B.

\/
™ | =

E
2
b. eliminare una parte della struttura.

A

E
2
(T)

c. Ovviamente bisogna porre qualcosa in sostituzione della parte di struttura che viene
eliminata, in quanto non sussiste piu I'equilibrio; e qui entrano in gioco le caratteristiche
di sollecitazione interna.

Tutto cio funziona fintantoché la sezione non incontra la forza applicata F, quindi:
0<x<i2

N sN-=0

- nel sistema non & applicata nessuna forza che produca azioni di trazione o compressione.

1T >1-r2=0>T=F2]

]@0 DM-F2*¥:2=0>M=F 2=

per x =0 9
per « =10/2 9

d. continuare I'analisi per la restante parte della struttura.
N.b. vanno eseguite tante sezioni quante sono le parti di struttura divise da applicazioni di forze; in
questo caso le sezioni significative sono due.

/2 oo
R2<x<l

N >N-0
T >T-F2+F=0>>T=-F2]

-> una forza concentrata fa saltare il taglio dell’entita della forza stessa.

1@0 > M- F2%(x + [/2) + F*2.= 0

per =0 9
per =1 9




\EATICA DELLA TRAVE

e. riassumere graficamente. Scegliendo il verso di percorrenza opposto i risultati non cambiano, ma per iniziare 'analisi €
necessario girare considerare I'altro lato del concio.

B
' N (0]
F | -
l ' B 0<x <02

-
7 N >N-0 3

F F
) ) IT s1+m-031-m2
l2 ' l2
E @O >M-F2*%:.=02>M=F2x
per==0 >
| per =12 >M=F/4]
N=0 N=0
N :
_Rotazione del concio di convenzione positiva nelle strutture.
w2 | ([T 3 *@' >
roo TSI 2
M




_Esercizio n.10

2Hi=0

H-F=0 >
2Vi=0

V=0

2ZMi=0

F T
x$X

sezione 01

0<x<l!

N >N+F=05N=_r)
\T >[T=0]
(Mo > M+¥12=0 SM=—¥72)

Considerazioni

Ricordare sempre di ruotare il concio di
convenzione positiva nel modo giusto (vedi
schematizzazione sovrastante).

CARATTERISTICHE DI SOLLECITAZIO@

F€/24x
A B
—
..... —’.-..-...-..-..--94_.. -_————
F R F
{
F//2
7 A B
—
C
4_
F
7
N FII {:3 -

F//2

<>

(I =2

sezione 02
0<x</2

N =0

T >T-F=0 >(T=F

@ D>M+Fr=0 2> M=-Fx

per = =0 9
per = {/2 9




_Esercizio n.11

2Hi=0
Ha—FAN2=0 >(H,=FA2)
2Vi=0

Va—FAN2+Vp=0
>Ma=0

M — FN2*30/2 — FIN2*0/2 + Vp*20 =0
> M = 2F/N2 — 2Vp!

>V,
SV

Lpl validadaDaC
Lp2 validada C ad A

sezione 01
0<x<!

N >N+F2=0 >N=—r12
T >[T=0
Mo >M=0

2

FA2

(72

FA2

TF/\/Z

(S

02

2

/2

(2
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N M
AN
T
o\ D
F/2
F/\2D 12
F/2

F/2 °F

sezione 02
0<x<Nh2/2

&V >N+F2=0 >N=-F2]

AT >1+82=0 >(T=—r2]

Q\/[O >M-F2*%:,=0> M= Fx/2
per = =0 9
per = =M2/2 >M=F~2/4

sezione 03
0<2<h2/2

"V > N+F2=0 >N=—F2]
ST S>T+E2-F=0 ST=F2

@/[0 > M — F2%(xc + N2/2) + F. =0

per 2 =0 > M=r 2

per = = N2/2

>M=0
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_Rapporti fra taglio, momento e linee delle pressioni.
N.b. il taglio € una caratteristica di tipo forza, e quindi salfa quando incontra forze applicate; il
E possibile tracciare intuitivamente il grafico del momento flettente a partire dalla linea delle momento, di conseguenza, salta incontrando una coppia applicata.
pressioni, sapendo che:
a. nei punti di intersezione o identita fra linea delle pressioni e struttura il momento & zero.
b. in caso di parallelismo fra struttura e linea delle pressioni, il momento sard una
costante. '

c. pit é grande la distanza fra la linea delle pressioni e la struttura, piu si verifichera CIE?Z c!
momento. A : 'B
d. se la linea delle pressioni & di compressione, il momento ¢ situato all'opposto di essa §::| A‘
rispetto all'asse della trave; se di trazione, il momento ¢ situato dallo stesso lato della ' o
linea delle pressioni. | Ry
: ! 'Cl/2
Ad esempio, nel precedente esercizio: : : ;
- fra A e B la Lp2 coincide con la struttura = il momento sara zero nel tratto di 2 2
coincidenza. ; ; 5
- inDlaLpl interseca la struttura = il momento sara zero nel punto di intersezione. ; : ;
- fraBe ClaLp2 si allontana dalla struttura = il momento, partendo da zero, andra via ; ; ;
via aumentando fino a C. ; ; ;
! N=0 ! N=0 !

- fraCeD évalidala Lpl, e si avvicina alla struttura = il momento, partendo dal suo
massimo in C, andra via via diminuendo fino a zero in D. N

- Lelinee Lpl ed Lp2 sono di compressione, quindi il momento sara disegnato dal lato
opposto ad esse, con asse la struttura.

Inoltre, il diagramma del taglio & la N2
derivata del diagramma del momento.
Da cio si puo dedurre:

- se il taglio é zero in un tratto, il
momento sara costante o zero.

- se il taglio & costante, il mo-
mento sara un'inclinata; il taglio
in questo caso & il coefficiente
angolare del momento.

- se il taglio € un’inclinata, il mo-
mento sara parabolico; e cosi N2
via.

- se il taglio & zero in un punto, il
momento avra un massimo, un
minimo od un flesso, come
matematica insegna.

>

r MR EARRNTRIRAN ! <o

<

>

-> il taglio non percepisce la coppia
-> il coefficiente angolare nel momento & uguale, come si desume dal diagramma di taglio,
Per conferma di quanto detto, vedere ma il diagramma di momento salta in corrispondenza della coppia.

I'esempio precedente.




_Esercizio n.12

2Hi=0

>Vi=0
V-gl=0 >

YMi=0
M- q/*302=0 >[M =3q2/2

sezione 01
0< <2/

N »N-0
(T >T-q/=0 >T=¢/

]@o > M +3q22 —q/*2=0

per =0 S(M= 34772

N

A\

3q/%/2

=l

wvzgm

/

per o =3/20 > M=3q/?/2-3q*2=0>M=0|

per = =20 > M=3q?%2-2¢/?=0->M=q?2]

af L LIIT]T]]
{ {
¥
/ w o on
af [ LIIT]T]]
{ {

[
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4
' ' T T s
sezione 02 5
0<x<! i
N=0 '
N =
IN >N-¢=0> —
O
"= : - E
1@0 > M +3q/2 - q/*2/=0 — =
SM= g7 i N
” G TG TR e
q] r : :
N : : :
T : : :
i i i -0
sezione 03 x
0<x<t E E E )
| eI L0’
N >{N=0) ; b
> i i i
per==0 HT=0] M O] la?2
pers =1 ST=—] 5
N ©
@0 >M-—que*x/2=0 i i =
per =0 9 ! m@ Iq52/2

per =1 9
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_Esercizio n.13 q _Momento, taglio e sforzo normale
A B in termini differenziali.
2Hi=o0
+Vb—ql= . . . o .
VatVb-gi=0 ! qb ! Prendendo una piccola parte di carico d«, si nota M, M
TMa A B che il carico & variabile, ma la porzione conside- N T T N
A,_no ) > . rata & tanto piccola da essere costante. -
M — ql*/2+Vb* =0 EE ; : A dx B
9 VB = q€/2 3 E ;L
SVazal2 N I TR
Da A a B ci si sposta di d«, e di conseguenza le M M+dM
q R M q R 5 azioni non sono uguali; quindi viene applicato un N T dTN+dN
AL ¥ I ‘ piccolo incremento d.
T A dr B
q//2 q//2 q//2
- !
Dopo aver individuato le risultanti della piccola
sezione 01 porzione di carico obliquo preso in considera-
0<. </ zione, € possibile calcolare I'equilibrio del concio.
v A“dr B
N >
0 A — ) — dN 3
lT >T-q/2+qrc=0 N SON-gh*de+N+dN=0 Dlgh= 4| (derivata N)
per =0 >[T=q72 i
) ) ) T >T-qu*de—(T+dT)=0> —qu*de—dT=0 > g’ = 1. | (derivata T)

perc=02 >T=q/2-ql2>[T=0) x

per = =0 > T=gq//2—q/>T=—ql/2] @[o > —T*de—M+qu¥dz?/2 + M+dM=0 > %f: T | (derivata M)
>M=]T
QWO > M —ql2%c+ qr*x/2=0
perx=0 = N.b. d2c?/2 & un infinitesimo di ordine superiore, v M, MJ;\/dfde
per = =0/2 > M=q/?/4 — q/8 9 trascurabile rispetto agli altri termini dell'equazione. T 74T
A“dr B

per = =0 > M =ql?2— q/*2 >




_Lacerniera interna.

Trattasi di un particolare vincolo che, come la normale
cerniera, non puo trasmettere momento.

Ogni trave ha tre gradi di liberta; la cerniera interna € un
vincolo doppio, ed impedisce due gradi di liberta. Due travi
posseggono sei gradi di liberta, e vincolate con tre vincoli
cerniera, impedenti ognuno due gradi di liberta, formano
una struttura isostatica (a fianco).

La cerniera interna & comunque mobile. >

E evidente che non si posseggono sufficienti dati noti per
la soluzione del problema (troppe incognite) > € neces-
sario scrivere un’equazione ausiliaria di equilibrio del
momento, calcolando nel punto di cerniera interna (B); tale
equazione € relativa al troncone t1 o t2 della struttura > i
due tronconi possono essere calcolati separatamente,
ponendo che in B i momenti dei medesimi sono nulli.

La linea delle pressioni deve passare per le cerniere,
poiché & noto a priori che in tali punti non si verifica
momento.

Da B a D non sono presenti carichi, quindi la Lp1 deve
essere regolata dalla reazione di D, e passare per la
cerniera in D e la cerniera interna in B.

Tracciare la linea d'azione di F; prolungando dall'interse-
zione con la Lp1 in A siindividua la Lp2.

B C
O
L2
—>
F ;
hi2
A D
H A H D
A% A VD
g
/2
F n
hi2
A D
R
A R

\EATICA DELLA TRAVE

2Hi=0
F*HA*HDZO
2Vi=0

VA—VDZO QVAZVD

>MA=0
M —-F*./2+ Vp*l =0

>p=r 1] (
>va=r 2] !

. , T B
-> le equazioni, come previsto, non sono sufficienti alla O
risoluzione del problema. - si ricorre all'equazione t1 E
ausiliaria.
—»
2MB (cerniera interna) = 0 ¥ Va
parte sinistra della struttura t1 Ay,

N.b. scegliere nellanalisi sempre la parte di struttura che & utile ai
fini del calcolo, e cioe dove si trovano forze applicate note.

M+ F*0/2 —Hp*h =0

=2
(= ¥2]

Va
N.b. V, e V3 formano una coppia positiva l Vj di valore FA /20%0 = F/. /2,

—
controbilanciata dalla coppia che formano le reazioni Hy + Hp con la forza F
pari a F*/. /2 = F/ /2, negativa - situazione di equilibrio. H, + Hp

hi2

h/2

h/2

h/2

F/2



sezione 01
0<x<hl2

TN > N-FL2/=0 DN

T >T_w2=0 >[T=rn)

@ >M-F2*%r=0 2> M=Fz/2

per =0 9
per = = h/2 9

sezione 02
0<x<h/2

tN > N-m2i=0 SN=F27]

—’
T >T-F2+F=0 >T=-F2)
MO > M- F2%(e + h2) + F*2 =0

per - =0 > M= /4

per . =//2 > M=—FL/4—FL/A+FL12 >

CARATTERISTICHE DI SOLLECITAZIO@

:IIIIIIIIIIIIIIQ|||||||

% LIFQ
N & =
W] w2
20 %IIIIIIII@IIIIIIIIIIIIII
T é :

sezione 03
0<x<h

tN SN+F2=0 SIN=

T >T_w2w=0 >T=¥2)

@ >M+F2*%x=0

per =0 9
perx ="/ 9

M
N = ¢
T
b2
b2
<—
FL20T 2

sezione 04 -
0<x<!

N SN+F2-0 SN-—m2)
IT >temm-0>T=wn)

QMO > M+ F2*) — Fh/20*2=0

per = =0 >[M=—F./2]

per z=0 > M=—Fh/2+F"/2 9




_Esercizio n.14

2Hi=0
Ha+Hp—ql/2=0

2Vi=0
VA—VD:O QVA:VD

XMa=0

M + q//2*30/4 — Vp*2[=0
> M=-3¢2/8 +2Vp/

>

>

XMc=0
parte destra della struttura rispetto a C
M — ql/2%0/4 + Hp*l =0

9 M = q€2/8 —Hpé
>[Hy = a8
> Ha=q!/2—q!/8 >[Hs = 3q//8]

Lpl1 validada D a q//2
Lp2 valida da qf/2 ad A

‘m

2

>< >

S

K=
=~
\9)

>< >

=

‘é/Z
‘5/2

‘5/2

2

<>

o~
~
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M N

4
o T
3q//16V2
A

9q//16V2

sezione 01
0<=<h?2

SN > N+9q0/16¥2=0 >[N =—9q//16y2
NI > T+3q/1682=0 >[T=-3q//16\2

Mo > M +3q/16\2%+ =0
perx=0 9
per = =N\2 >M=-3¢/?16

3

[3q//8

/16

=31

i m e e e mmmmmmmemeooo

Q ToTTTN

=
=
x

:

| T

9q/7/1

[\

8

I3q62/16



3qf/16

<< >
A [o®

sezione 02
0<x<!

N 3 N+3q/8=0 >N=_3q/3
(T >T-3¢/8=0 > =3q/8

J@o > M —3q//16%( + 1) + 3q//8% = 0
per =0 > M =-3q¢?/16

per = > M=3q/%/16 + 3q//16 — 3q//8 >M =0

3q//16
X —>
sezione 03 q//8
0<x<i2

IN >N -3q/16=0 >[N=3q/16]
T >T+qi8=0 ST=—q8)

M3 > M- g2~ 0
per « =0 9
per x =1{/2 9

CARATTERISTICHE DI SOLLECITAZIO@

sezione 04 q'/8
0<x<I/2
tv sn- 3q//16=0 > N =3q//16
—>

T >T+q¢//8-—qx=0
per =0 >(T =—q//8]
per = =1{/2 >|T=3ql/8
per = (/8 9
@ > M - ql/8*%(l/2 + 2) + qu*x/2 =0

per > =0 >[M=q/16]

per = =02 > M=q?16 + q/2/16 — q/8 >M =0

per . ={/8 > M= q?/16 + q/?/64 — q/?/128 > M = 9q/?/128| (massimo)




_Esercizio n.15

XHi=0
qg—HA—HH:O

2Vi=0
VH—VA:() QVA:VH

>Mu=0 C

M + q/*0/2 + VA *¥30 —Hp*/=0
9 3VA = HA — q@/Z
2> Vao=Ha/3—ql/6

2Mbp =0
parte sinistra della struttura rispetto a D
M + q*30/2 —Hp*20+ Vp*20=0

> M+ g2 - Ha* 20+ (Ha3 —all6y20=0 ;T

> M +3q/2/2 — 2H,/ + 2H,//3 — 23 = 0

> M —4Hp!/3 +7ql*/6 =0 C D~ E

> 4HA/3=7q2/6 >(H, = 7q//8] [ F
<_q> H G /

> Hy=q/—7q//8 >[Hy = q//8 | B

> Va=Tq024 - ql/6 >V, = qU/8] Ve Vi
>

A Hyu

Lpl validadaD a ¢/
Lp2 valida da q/ ad A C D~ E

\EATICA DELLA TRAVE

| E
1 | |
e |
; ]@ ;
oA TR o
sezione 01 o, ;
0<.<! A A
tN >N -_q8=0 S[N=qi8] | | | | -
. ; = [q//8
T >T-7ql/8 +qr=0 : ' g :
per =0 2> T =7q//8 I ; o
i i 'ql/8 H
per =1 >T=—q/8 s o
per « =7//8 9 : : : :
Mo > M — 7q//8%*x + qc*x/2 =0 i ; q@/\MZ i | T:()i
B 1 78 | :_ |
perz=0 > i N =INE:
T |

| L)

perc="0 > £ —

iq//8

M = 7q/%/8 — q2/2 >(M = 3q/2/8 é
<«

per = =70/8 >
M = 49q/2/64 — 49q/2/128

> |M = 49q?/128] (massimo)

49q/2/128
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, 3q//4\2
sezione 02

0<x</A2
SN SN+oN2-gA2=0 SN=0]
NT > T+g/AN2-3¢/42=0 T =—q//4\2

Mo > M — q/N2*IN2 + qlN2#1/2N2 + qlN2*(12N2 + ) — 3qU/AN2*(UN2 + ) = 0

per =0 > M= q/?/2 — q/*/4 — ql?/4 + 3q/?/8 > M = 3q/*/8

per x =2 > M= q*2 — q?4 - q?/4—q> +3q/%/8 + 3q//4 >M = q/*/8

sezione 03
0<x<?

N > N-7/8+q/=0 SN=—q/8]
1T >T+q/8=0 >[T=—q/8)

]@o > M+ ql/*30/2 — Tql/8%20 + ql/8*(c + 1) =0

per = =0 > M =—3q//2 + 7q%/4 — q/*/8 >M = ¢/*/8]

per =10 > M=—3q?22+7q/>/4— q*/8 — q2/8 >

sezione 04
0<x<!

N > N—qi8=0 >N=qi8]
1T >T-q8=0 >[T=q/8]

]@0 > M+ ql/8*%x=0

per = =0 9
per = >[M=—q7/8]

sezione 05
0<x<?

tN > N+q8=0 SN=_q8]

_>
T >T-q/8=0 >(T=q/8]
@ > M+ ql/8*+ ql/8%x =0

per - =0 SM =47
per 2= SM=—q?i4

sezione 06
0<x<2/

N SN+ a8=0 SN=—g8]
1T >1+q-=0>T-—q]

@0 > M+ ql/8* + ql/8*({ —2) =0
per = =0 —)

per = =1{ 9m

per « =20 9
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_Esercizio n.16

SHi-0 '
W He=0 .
A
TVi %ET ’
1=0 [
VA —Vg= 0-> VA = VE q&/z
ZMC =q0 6 6 @ ) 00} 6 n (C n )
M + q/*[/2 = V¥ =0
N sezione 01
N 0<x<? '
R s o [[IS
SMe -0 N >[N=0] |

ME — qV,*@/Z — VA*g =0
> Mg = ql*/2 + ql/2%30

>0

]

T >T-q2=0 >[T=q2)

]@0 >M—q/2%x=0

per « =0 9
per <=1 SN g7

Lpl validada A a ¢/
Lp2 validada q/ad E

ql/2. ]

(S
\
(SN
\
o~

q//2 [ [ I
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sezione 02 sezione 04
0<o<l 0<o<!
« n
tN > N+q2=0 SN=q22) N >N+g'=0 >N=—q/
T t
T >T+qe=0 T >T-q2=0>T=qg/ ;
ql
per 2 =0 S(T=0) \vj
: (Mo > M+ qi*1+ qi2#( + ) - 247 =0 2qP?
per ==/ 9

perz=0 > M=2q2—q2—q?2 > m

A St e e per =/ > M=2q—q? — q%2 —q%2 > M=0)
0 -q Ut qr*all=

per =0 > M= g2
per v =10 > M= ql*2 - q?/2 9

N M NG
oo™ 340242
E
sezione 03 q/2\2
0<x2<A?2 M
2q/?

& D N+¢2\2=0 > N=4q/12\2
AT > T-3q282=0 > T=[3¢/2V2

@o > M+ 3q//2\2% % — 2¢/2=0
per =0 >
per = =M2 > M=2¢2-3q22 >M=q?2




_Esercizio n.17

2Hi=0
HH—HA:() éHA:HH

N.b. graficamente & possibile intuire
il valore di Vi = 1a Lp1 ha un’inclinazione

di uguale modulo > Vi = Hy

>Vi=0
Va-2q/—Vy=0

>Mu=0
M +2q/*50— Vpo*4l+ Hpy*20 =0

9 2HA:4VA— 10q6 C
9 HA = 2VA - 5(]}2

ZME=0
parte sinistra della struttura rispetto a E B
M +2q/*20 —Hp*.— V¥ =0

> M +2q/*20 = 2V, — 5q))* = V¥ =0

> 4q/—2VA+5¢/—VA=0

20 { 4 20
>3V,=9q/ > \
> Vg =3q/-2q/
>Vua ] b ; .
, C
- Hy=23q!) - 5¢/
Sia=a) )
>
B A
. , N H,
Lpl valida da H a 2q/
Lp2 valida da 2q/ ad A
20 4 4 2/ Vu
Va |
—
Hy

o=

N

[

(S

[

2!
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| | l
y "
N T “A g s IFA ) E f
q qQ
2
= 2 5
sezione 01 Bar
© <20 Al
0=n=2 o | I
4_
N >N+q/=0 >N=—¢/
T _ii l
T >T+3q/=0>T=-3q¢ i
UIEZND o
Q\/Io > M +3¢*2 =0 L 3qf
> M=-3qlz i
per =0 9 3qQ
per =2/ >M =~ 6q” o
- Il
= =
S s
a =
4(‘152:' =
§ A4q€2
(6q7/2] )
34| < J4q?
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N
A M
I,
A Fp/g;ml
sezione 02 > B A
0<x<20 " ol 2
tN >N+3g=0 >5N=-3¢) |

20
- , . 3q/
T >T-q=0 >[T=q] 4
1 o sezione 04
+ Vx0) _ («,/* = -
‘Mo > M +3q(*20—ql*~=0 0<.r <2
per =0 M=~ 647
per = =2/ >[M = —4q/?] NN P N+q2-2¢2=0 >N =g\2]
— T >T+qN2—qN2=0 >[T=0
al M Mo > M + qN2*IN2 — 2qN2% N2 + qN2*(N2 — ) + qN2* (N2 + ) =0
p N per =0 > M=— g +4q - 2q— q? >M=0]
V per =2 > M=—q?+4q/*— 2q/* + 2q/* — ¢~ 2q> >M =0
20
sezione 03 v B A
0<x<2/ q’ sezione 05
0<x<4l
= IN >N-g=0 >N=4]
3q/ mT —a
lT >T-3¢/+qz=0 _
per =0 ST =34 T >T+q=0>T=-d
=20 > T=3q/—2q/>T=¢q/ )
per « =20 qt—2qt /A/?S%qu‘é*ao=0

per = =0 >M=0
Q\/Io > M - q/*2/ + 3q/*(2L — ) + q¥ /2 =0 per =4/ >[M = 4q7]
per =0 >M =4/

per v =20 > M =2q/? + 6q/* — 6q? — 2q(* >




sezione 06
0<x<2/

N >N-q'=0 SN=q
1T 51 q-0T=4q)

@0 >M—ql*4l+ q/*2x =0

per =0 9
per = =2{ 9

sezione 07
0<x2<A?2

YN SN0
T >T-q\2=0 >[T=qA2]

@[o > M- gN2*(\N2 - 2) =0
per =0 >M=2q7)
per = =2 9

o

q/

><

><

><

><
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_Verifica mediante I’equilibrio globale alla rotazione.

E molto utile eseguire anche l'equilibrio globale alla rotazione della struttura, in verifica finale
dei calcoli trascritti nel diagramma di corpo libero.

20

o~
o~
o~
o~
[N}
=

i 0
3ql q’ y

- eventualmente, € possi-
bile scomporre forze e rea-
zioni, in modo da ottenere
coppie formate da forze di

eguale modulo. B A
4 v
; a |n
q 4
QL
¢ 4¢
XMi=0

M — q/*4l + /*20 + 2¢/*/ =0 > - la struttura & in equilibrio alla rotazione.



A.4
STRUTTURE RETICOLARI

STRUTTURE RETICOLM

Le strutture reticolari sono strutture formate da aste rettilinee, connesse agli estremi attraverso
nodi cerniera. Tali strutture possono essere sia spaziali sia piane.

Il punto di incontro di due o piu aste nel quale non viene trasmesso momento & chiamato nodo
cerniera.

nodo cerniera

asta rettilinea
. asta retiilinea

Assunti di calcolo da adottare per strutture reticolari piane:

- reticolare con aste interconnesse da cerniere perfette (metodo che non sara affrontato;
la cerniera perfetta equivale ad una cerniera normale in cui M = 0, tenendo conto che
in casi particolari le cerniere trasmettono momento).

- reticolare con carichi esterni applicati ai nodi cerniera - tutte le aste sono soggette
solo a sforzo normale, costante lungo tutta la lunghezza dell'asta. > le aste possono
quindi anche essere dette bielle.
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_Tipi di strutture reticolari. _Concetti preliminari per il calcolo.

a. individuare le reazioni vincolari esterne
b. trovare gli sforzi normali su tutte le aste

- Reticolare Polonceau -> siinizia numerando i nodi e le aste (es. nodi con numero arabo cerchiato, aste con numero
arabo non cerchiato), e successivamente si conteggiano i gradi di vincolo esterno.

Nn (numero nodi) : 6

Na (numero aste) : 9

- Reticolare Inglese Nv (numero gradi di vincolo) : 3
-> due dalla cerniera, uno dall'appoggio

7

0

4
-> le incognite sono lo sforzo normale NV sulle aste e le reazioni vincolari. = ogni nodo

fornisce due equazioni di equilibrio; le equazioni complessive sono quindi due volte il numero
dei nodi.

[

- Reticolare Mohnié

equazioni =2 Nn
incognite = Na + Nv

una struttura reticolare piana € risolvibile quando:

2 Nn=Na+Nv

0 meglio, riassumendo in un coefficiente g:

g=2N~n-Na-Nv

- Reticolare Neville

g>0->2 Nn>Na + Nv - struttura labile
g=0-> 2 Nx=Na + Nv - struttura isostatica
g <0 -> 2 Nx < Na + Nv > struttura iperstatica

quindi, la struttura di partenza
Nn=6 Na=9 Nv=3 >12=12, g=0 > & unareticolare isostatica.




STRUTTURE RETICOLM

_Metodo di calcolo dell’equilibrio ai nodi.

a. calcolare le reazioni vincolari.

b. scrivere per ogni nodo due equazioni di equilibrio, una alla traslazione orizzontale ed
una alla verticale.

c. le incognite delle suddette equazioni sono gli sforzi normali su tutte le aste.
N.b. & indispensabile non avere piu di due incognite per nodo, e gli equilibri fatti agli
ultimi due nodi permettono di verificare se i precedenti calcoli sono esatti > delle
quattro equazioni che vengono scritte, tre sono di controllo poiché le reazioni sono gia
note dagli altri calcoli.

-esempio pratico-

a. calcolare le reazioni vincolari.

2Hi=0
H=0

o=

XVi=0
VoO-P-V@=0

Mo =0
M- VO*/+pP*/ =0

2> Vo=p
-> VO=2p

Nn=6
Na=9
Nv=3 /

b. per il calcolo si parte da un nodo cerniera che comprende due sole aste, per il quale vanno
scritte due sole equazioni. = nellesempio & possibile partire dal nodo (@ o dal nodo ().

Convenzione: se lo sforzo normale NV su un’asta & incognito, esso & sempre uscente dal nodo.

c. scrivere le equazioni di equilibrio, una alla traslazione orizzontale una alla verticale.
E.O. [N6+N5N2=0 = N6=—N52 > N6=P

EV. |[-P-N5A2=0 > N5=—P\2

d. ripetere tale operazione per il resto dei nodi.
Convenzione: se lo sforzo normale su di un’asta € noto e positivo si indica uscente dal nodo,
se noto e negativo entrante nel nodo.

E.O. IN7-P=0-> N7=P

EV. |[-N4=0 > N4=0

EO. |[-P-N3\2=0-> N3=-P\2

EV. |-N2 =N3\2=0 > N2=P




N2 =P

EO. |-NI=0->NI=0

EV. |-P+N2=0 > N2=P
(prima equazione di verifica)

EO. [-P+P+NI=0>NI=0
(seconda equazione di verifica)

EV. |-P-P+2P+N4=0 > N4=0
(terza equazione di verifica)

Riassumendo il percorso eseguito:

N5 N7 N2 NI verifica
N6 N4 N3 verifica verifica

e. redigere una tabella riassuntiva dei risultati ottenuti.
N.b. se un'asta ha sforzo normale positivo € detta tirante, se negativo puntone, se zero asta
scarica.

asta valore N tipo asta
1 0 scarica
2 P tirante
3 —P\2 puntone
4 0 scarica
5 —P\2 puntone
6 P tirante
7 P tirante

\EATICA DELLA TRAVE

f. come ultima operazione, segnalare i risultati ottenuti nella struttura di partenza.

©) 6
= puntone A
; P
—— tirante
{ 5
~~~~~~~~~~~~~~ asta scarica
17 /

_Metodo di calcolo delle sezioni di Ritter.

Tale metodo permette di calcolare gli sforzi normali in una struttura reticolare note le reazioni
vincolari. Si basa sul teorema fondamentale della statica secondo il quale “se una struttura ¢ in
equilibrio lo & ogni sua parte”.

Chiamasi sezione di Ritter “canonica” una sezione che divide in due parti una struttura
reticolare, tagliando tre aste non tutte concorrenti nello stesso punto.

-esempio pratico-
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a. dividere la struttura in due o piu tronconi. d. proseguire per gli altri sforzi normali incogniti, cambiando di volta in volta nodo.
N.b. la sezione deve tagliare né piu né meno tre aste, non concorrenti in uno stesso
nodo. P
N.b. si prende in considerazione un nodo trovato ©)
P all'intersezione delle rette d’azione di N3 ed N5, N5 5
5 ©) coincidente con il nodo (2).
? = NI 4 /
3 4 2M® parte Dx =0
M —NI1*, —P*[=0
%
» > NI=-P NI 1
P z S@ 1 1 @

- nel caso degenere in cui le rette d’azione degli sforzi normali siano parallele (calcolo di N3),
si sostituisce I'equazione di equilibrio alla rotazione con una di equilibrio alla traslazione, nella

b. mettere in evidenza le forze interne e gli sforzi normali incogniti lungo le aste. direzione perpendicolare alle due rette parallele.

<— ] Pl\
5 ©, s ©)
N5 si considera in questo caso solo una componente N3

N3 di V3, quella verticale che rientra nel calcolo.
N3/2

N ! P=n3 N3/\/2J3 4 ﬁ l

2V® parte Dx=0
M+N3N2-P=0

N3
—> NI NI <— -
P Zi@ 1 1 ©) > N3=P\2 NI 1 O

c. la struttura & in equilibrio in ogni suo punto, quindi & possibile redigere le equazioni di - N.b. il metodo delle sezioni di Ritter non permette di conoscere tutti gli sforzi normali di una
equilibrio. Viene utilizzata I'equazione di equilibrio alla rotazione, scegliendo per iniziare reticolare > per gli sforzi restanti bisogna ricorrere a sezioni non canoniche o al metodo
un nodo che lasci nell’equazione una sola incognita. dell'equilibrio ai nodi.

P

> nel nodo @ N1, N3, P hanno con- ©
[l ] 5 5
tributo nullo nel calcolo del momento; £ -0 A

I'unica incognita & 5.
A

2=N5

2M® parte Dx =0
M+ N5*/=0

> N5=0

NI
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B_ 1 La deformabilita di una struttura dipende dai materiali di cui € composta e dai parametri

geometrici in gioco.
TRAVE INFLESSA

Tema di studio & l'oggetto trave, oggetto con una dimen-
sione preponderante rispetto alle due restanti. || modello
trave viene identificato come elemento monodimensionale,
rappresentato dallasse longitudinale della stessa (luogo
geometrico dei baricentri delle sezioni).

Nello stesso modo sono state affrontate le caratteristiche di sollecitazione interna (vedi p.18)
-> le sezioni trasmettono fra loro le azioni di taglio, momento, sforzo normale. In questo
capitolo si studieranno le deformazioni indotte da tali sollecitazioni.

_Deformazione longitudinale.

Prendendo un concio di ampiezza dz

il medesimo reagisce allo sforzo normale applicato, allungandosi di Adz.

Adz sara:
- proporzionale allo sforzo normale N ; :
- inversamente proporzionale allarea della ‘
sezione A Neoe— | I
- dipendente dalla lunghezza dz considerata | 3
- dipendente dal materiale di cui & composta
la struttura = modulo elastico E

Adz= — - deformazione assiale.

EA = rigidezza assiale, che ha in sé una caratteristica meccanica (E) ed una geometrica (A).
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TRAVE INFLESSA |

Nello sforzo normale Adz é inversamente proporzionale allarea
della sezione perché:

se la sezione ¢ grande, le sollecitazioni si distribuiscono in piccole forze su
tutta la sezione; discorso analogo se la sezione ¢ piccola, ma le forze hanno
minore spazio in cui distribuirsi e quindi la sollecitazione & maggiore >
diviene fondamentale conoscere la sezione dell'oggetto.

_Deformazione a taglio.

Nel taglio il concio si deforma nel modo illustrato a fianco, ovvero
le sezioni scorrono reciprocamente e si ingobbano.

Per semplicita, la vera deformazione viene approssimata,
lasciando le sezioni lisce. In ogni caso, la deformazione tagliante
sara per ora trascurata, poiché viene adottato per lo studio il
modello di trave di Eulero, che trascura tale deformazione (la
quale in realta & estremamente piccola nel caso di travi sottili).

_Deformazione flessionale.

Nel momento flettente le fibre superiori del concio si comprimono
e le inferiori si tendono, secondo un arco di circonferenza. Ma gli
spostamenti sono abbastanza piccoli da poter approssimare,
confondendo I'arco di circonferenza con la sua tangente.

¥ S5 = — S
simbologia realta approssimazione

| due assi su cui giacciono le due sezioni del concio si incontrano
in un punto, formando I'angolo d¢ ed un raggio di curvatura R.

Si nota che nella definizione di rigidezza vista poc’anzi I'area non
& sufficiente, poiché la sezione resiste in modo diverso per
posizione -> viene inserito nella formula il momento di inerzia.

- EI = rigidezza flessionale.

_Modello di Eulero-Bernouilli e Timoshenko.

Si prenda ad esempio una trave 7
incastrata con una forza P applicata
sull'estremo libero, ipotizzando che un
solo concio della struttura sia deforma-
bile.

Z

Alla sollecitazione momento flettente
M si otterra un effetto di questo tipo.

Il taglio T & di minore entita, ha sem-
pre incisivita minore > & possibile
trascurare le deformazioni date dal
taglio.

P
«
dv
¢ dU

-> pil la trave ¢ sottile, pit la deformazione tagliante T & trascurabile rispetto alla flessione M.

M

L —— 7

travi sottili

Sono le travi che verranno analizzate in
questa sede, e seguono il modello di
Eulero-Bernouilli, caratterizzato da:

- mantenimento delle sezioni;

- spostamenti piccoli;

- trascurabilita delle azioni taglianti.

travi tozze

Gli effetti di deformazione a taglio e flessio-
nale sono comparabili; tali travi individuano
il modello di Timoshenko.
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MTRAVE ELASTICA

Per disegnare la deformata flessionale di una
struttura, & necessario conoscere innanzitutto

le condizioni di cinematica nei vincoli.
cerniera appoggio 7
ul =10 ul #10

v|=10 v =10

¢ | #10 o | #10

Nella deformata reale il carrello resiste sola-
mente agli spostamenti verticali, e quindi
pattina.

Nella pratica si prende in considerazione

un’approssimazione, secondo la teoria dei i
piccoli spostamenti - I'appoggio si sposta fS [‘U(z)
talmente di poco da essere lasciato dov'é, [ B 2 00
ovvero si considera / = /. , .
to 4
configurazione configurazione
indeformata variata o deformata

U di (z) e detto linea elastica, e rappresenta la

configurazione deformata per effetto della fles-
sione della trave.

_Relazione fra momento flettente e deformata flessionale.

U

Ingrandendo un pezzo di deformata, tracciare la tangente alla curva trovando I'angolo ¢,
angolo secondo il quale I'oggetto si deforma.
-> N.b. la tangente di una curva in un punto €& la derivata della curva in quel punto.
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Se I'angolo € piccolo, la tangente dell'angolo & confondibile con I'angolo stesso. Riassumendo:
d¥
Bo=o=-— 9 do 1 —> momento applicato
=0 2 %L TR mE g .
Convenzione: spostamenti positivi generano rotazioni orarie = fra M e ¢ si pone il segno — . dz dz R rigidezza flessionale

) ( 92 N.b.da — ¢ a 1/R sihaa che fare con passaggi ed equazioni cinematiche (compatibilita e
M) - (& congruenza con i vincoli), mentre da 1/R a — M/EI si passa dal mondo della cinematica a
quello della statica.

L'angolo d¢ formato dall'intersezione fra le tangenti € la rotazione relativa fra il punto 0 ed il
punto 1. -> la tangente che si considera & ovviamente tangente
per una famiglia di curve, e non per un’unica curva.

-> scendendo di grado mediante derivazione, la tangen-
te in un punto € una ed una sola.

_Richiamo agli integrali.

n+1 b

ke oz =

n+l1
a

-> formula generale di integrale definito. Per il calcolo sono utili gli integrali indefiniti, per i
quali basta aggiungere alla suddetta formula una costante C, che verra ricavata dalla struttura
di partenza.

n+1

fire: = ¥ 4 c

n+l

-> formula generale di integrale indefinito.

ds\| dz
de dipende da: " de (vera)Y (approssimata)
- lentita del momento flettente M
- linerzia del momento I R

- il modulo elastico del materiale E




_Metodo dell’'integrazione della linea elastica.

7 P
o
A B A B
P

[ [
THi=0 > H=0

XVi=0 > V-P=0 >
IMA=0 > M-P*=0 > M=P/|

2 = calcolare I'abbassamento in B.
N.b. partendo da destra la z positiva va da destra a sinistra.

M,=-P*z
Pu@ M P
a. cambiare di segno il momento A B
EI * d*W¥dz* = dz ’ :
< > / %
z

b. integrare I'espressione precedente

EI * d1Wdz = PZ*/2 + C,

c. integrare nuovamente
El* Y=P2/6+Ciz+C,

-> si ottengono due costanti. Bisogna quindi porre una condizione cinematica che definisca la
famiglia di curve utile.
N.b. se il momento & lineare, la rotazione ¢ e la linea elastica T* saranno curve.

perz=( > V=0
perz=0 > dWdz=0

-> la cinematica enuncia che in A rotazione e spostamento sono nulli, quindi & possibile
eguagliare I'espressione a zero.

MTRAVE ELASTICA

- EI V=) =PPI6+CL+C=0
- EIdWdz ,-y=PP2+C,=0 > C,=-P/2

- EIV,-)=PP6—(PP2)*(+C,=0 > C,=PP2-PP/6 > C,=P/'/3

Sostituendo il tutto:

EI * dWdz = PZ%/2 — P2
EI * U = PZY/6 — P2/2%z + PP*/3

EI ¥, ¢ =Pl/3 > |V =PF/3E1

Partendo da A, il discorso & il medesimo.

= *, _ P/
perz=0 >M=-P/ A
perz={ >M=0 P

EI * d*Wdz* =Pl - Pz
EI * dV¥/dz = Plz — PZ*/2 + C,
EI* Y =PlZ2 - PF/6+ Ciz+ C,

perz=0 2> V=0
perz=0 > dWdz=0

EI(U(Z:O):CZZO > C2:O > C1:0

EI ¥, -, =PF2 - PP/6=P/3
U =PP/3EI

E ora possibile disegnare la deformata della struttura.

PPR/3EI
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_Metodo dell’analogia formale di Mohr.

M ;= momento flettente.
M’ ;=T ;= taglio.
M*’,=T’;=-q = carico.

7}2 = linea elastica 0 abbassamento.
UV 7 = ¢z = rotazione.

V*?,=¢’z=1/R = cunvatura.

1/R =—M/EI - relazione sostitutiva che lega cinematica e statica.

E’ evidente che le relazioni statiche fra momento, taglio e carico sono in qualche modo
formalmente analoghe alle relazioni cinematiche fra abbassamento, rotazione e curvatura.
Mohr individud appunto questa analogia, disinteressandosi del fatto che da una parte si
trovano elementi statici (M, T e q) e dall'altra cinematici (2%, ¢ e 1/R).

Cinematica e statica vengono quindi raffrontate ipotizzando un mondo fittizio, indicato con
lasterisco .

q™ (carico fittizio) = 1/R = —M/EI
T (taglio fittizio) = ¢
M (momento fittizio) = Ut

a. trovare la rotazione reale equivale a trovare il taglio fittizio della trave - la trave viene
caricata con il diagramma delle curvature.

sistema Reale (sR)

/} M
P " [ ’||||||||||::é]“l“|||lllln...

b. & necessario il momento flettente nei suoi valori ed andamento grafico.
N.b. ¢ & il momento cambiato di segno e diviso per EI - si prende il diagramma di
momento invertito di segno, e quindi rovesciato.

I

q“*) =— M/EI = — PI/EI

¢. scrivere le condizioni cinematiche nei vincoli del sistema reale.
A(incastro): vA = O) PA = 0
B(cstrcmo libero)- (UB # 05 02 # 0

d. nel sistema fittizio bisogna porre dei vincoli analoghi che garantiscano:

A: M%), =0; T®, =0 > estremo libero
B: MWg#0; T®; £0 > incastro

sistema Reale (sR) sistema Fittizio (sF)

A B A B
VYa=0 V20 M(‘*;)A: 0 M(@?B;eo
02=0 o5 #0 T*a=0 T #0

Z

e. applicare il carico fittizio nel sistema fittizio.

S

f. calcolare taglio fittizio T® e momento fittizio M del sistema fittizio.
R = PI/EI * [ * 1/2 = — P?/2E1

Ty — PR2EI=0 > [T*; = P12/2EI = ¢g|

M — PR2/2E1* 2//3 =0 > (M%) = PP*/3E1 = Uy




g. Studiando le caratteristiche di sollecitazione della struttura fittizia, si ottengono le formule
generali per risolvere tutta la struttura (vedi p.48, esempio pratico di integrazione della
linea elastica).

P/2/2E1
M(*) C
1/R > R%), = — Pz/EI * z * 1/2 = — Pz2/2EI

B.
§ PZ/3EI
(%)
07 > T®, = PI2/2E1 - P2/2EI T

2, > M%), = Pz2/2EI * z/3 — P/2/2EI * z + P/?/3EI

z

Riassumendo:

a. calcolare il momento flettente nella struttura di partenza, e disegnarne il diagramma;

b. scrivere le condizioni reali degli spostamenti nei vincol;

c. porre nel sistema fittizio dei vincoli che soddisfino, con analogia a tagli e momenti fittizi,
le condizioni cinematiche del sistema reale;

d. caricare il sistema fittizio con il diagramma del momento invertito di segno e diviso per
EI, ottenendo il diagramma delle curvature;

e. calcolare momenti e tagli fittizi nel sistema fittizio, dove sia necessario, ottenendo
spostamenti e rotazioni del sistema reale.

N.b. in ogni caso nella realta il diagramma delle curvature non corrisponde al diagramma del
momento flettente, poiché bisogna tener conto della rigidezza flessionale:

sistema Reale (sR) sistema Fittizio (sF)

g C |—‘—‘—T—l C/EI
L] ? v

C/ELy C/EL,

N

< (MMM -~ A (sRy

-> Il diagramma di momento flettente non cambia, ma non bisogna dimenticare che il sistema
fittizio tiene conto anche della rigidezza flessionale EI - se il rapporto EI & piccolo il
diagramma si ingrandira, e viceversa; stesse considerazioni vanno poste se la trave & costituita
da due materiali diversi, con E, ed E..

MTRAVE ELASTICA

N.b. la linea del diagramma di momento del sistema fittizio, trasportata senza cambi di segno
nel sistema reale, & la deformata qualitativa di quest'ultimo.

sistema Reale (sR) > sistema Fittizio (sF)

2

J b=

momento sR — sF caricato

...

%

deformata sR G momento qualitativo sF



_Esercizio n.18

2 =rotazione in A e B.

ZVlZO 9 VA—VB:() 9 VA:VB
ZMA=0 > M-C+Vg*/=0

QVA:VB:CN)

sezione 01
0<x<l!

j@o SM+C/L*2=0

per = =0 9
per = =1{ 9

cinematica sR
A(cemiera): Va=0; eA#0

Biappoggio): Pe=0; o #0

vincoli sF

A: MY, =0; T®, #0 - appoggio
B: M®),= 0; TW5£0 > cemiera
N.b. il sistema fittizio & identico al reale.

q* =—C/EI
R® =_C/EL* [ * 1/2 =— Cl/2EI
2Vi(sF)=0

T(*)A + T(*)B —CI2EI=0

ZMA (sF)=0

M@, + CI/2EL * 20/3 — Ty % [ =
> M(*)A = T(*)BE _ CPA3EI
>T%,=ClBEI= g5 |
>(T%,=Cl6E1=¢, |

c/l

c/l

SPOSTAMENTI, ROTAZIONI, CURVATUE

o

_

7

o=

C
B

c/l

B
M oo |CEL

o~

T,
......... ‘B
R
20/3 ) s |

N.b. disegnando la deformata
qualitativa a monte dell'esercizio &
possibile comprendere anche |l
verso delle rotazioni. >

M eF) T,




_Esercizio n.19

2 = rotazione in A e B.

N.b. il sistema €& caricato simmetricamente
-> € possibile studiare la struttura caricata
con una sola forza e sovrapporre gli effetti.

Disegnare nel sistema reale la deformata
qualitativa & utile per intuire verso e segno
delle rotazioni o degli abbassamenti richie-
sti. >

SMA=0 > M-P*/3+Vg*[=0

Ve =Ps3 ]
>Va=2p3]

sezione 01
0<x<//3

]@o > M- 2P/3 *2=0
per = =0 9
per = =1/3 9

cinematica sR
A cemiera): Va= 0;04#0

Bappoggio): Pe=0; o # 0
vincoli sF

A:M®, =0, T®, 20 > appoggio
B: M®),= 0; TW5£0 > cemiera

7 7
3 /3 3

B
7
/3 20/3
|
A B
2P/3 T T P/3
/3 20/3

/3 20/3

MTRAVE ELASTICA

&) = _ 2P{/9EI
q A

R1% = _2P//9EI * /3 * 1/2 =— P2/27EI
R2%) = — 2P//9EI * 2//3 * 1/2 = — 2P//27EI -
A
>Vi(sF)=0 2009 /9 20/9 4//9

T, + T, — P2/27EI — 2P2/27E1 = 0

2MA (sF)=0

M, — P2/27EL * 2//9 — 2P/2/27EI * 5//9 + T®y * [ =0

> MW, = 2P3/243E1 + 10P/*/243E1 - T*)y/

>(T®y = 4P2/81E1 = g3 |

> T%, = P/9E1 — 4P?/81E1 = 0 >(T*), = 5SP2/81EI = ¢, |

E ora possibile applicare la sovrapposizione degli effetti:

5P2/81EI l P 4PPBIEL

By 0o
_|_
4PP/81EI P l SPR/81EI
/ B
P \
< > PA= Qa1 T Qa2

i3 > @a = 5P/81EI + 4P/81EI

Vg=P/3+2P/3=P > @a =P(*/9EI = @p
VaAa=2P/3+P/3=P

Ul




SPOSTAMENTI, ROTAZIONI, CURVATUE

_Esercizio n.20

= rotazione in A e B, abbassamento in /2. yvvvvvyvvvevy B
TVi=0 ~Pa P 0
VA + VB — q(c =0

¢
>Ma=0

—ql*l2+Vg*l=0 q/
>(Ve=q/2|>(Va=ql2], M) =q2/8 A B

n L
cinematica sR q//2 /2
A(cerniera)Z (UlA: 0; QA 75 0 0

Biappoggio): V5= 0; ¢ # 0

incoli sF %
Xr:ml:’/[l(:) A=0; T®, #£0 > appoggio M (sR) "“'"“l“||||||||||||||“ll|||||||||||||||||||||“" ]qaz/S

B: M®=0; T®5 #0 > cemiera

q% = — q/*/8E1
R1% = R2%) = — q/2/8E1 * (/2 * 2/3
- — q/*/24E1 q/?/8EI

2 Vi (sF) =

T, + T(*) — q/2/24E1 — q/2/24E1 = 0 7 7

o~

2MA (sF)=0
M), — q/2/24EI * 5//16 — q/2/24B1 * 11//16 + T®* [ =0

> M%), = 5q/%/384E1 + 11q/*/384E1 - T®g/ RI™) R2%
9{T(*’B = q2/24E1 = ¢y } ..................
>(T™, = qP24E1 = ¢, | A "B
M), — q2/24E1 * /2 + q2/24E1 * 3/16 = 0 T, Ty
M), = q/3/48EI — 3¢/*/384EI
> (M%), = 5q/%/384E1 = U, |

5016 3//16 30/16  50/16

_Esercizio n.21

2 =rotazione in A e B.

2Vi=0 > Vo+Vy—¢//3=0
IMA=0 > M—q//3*/2+ Vg*/=0
> (Vs = q/6]

>[Va=al6)

M., — ql/6*//2 + ql/6%(/12 =0

> M,,=5¢*72

M;‘/g, = q(jz/l 8

cinematica sR
A cemiera): Va=0; eA#0

Bappoggio): Ps=0; pg #0

vincoli sF
A:M®, =0, T®, 20 > appoggio
B: M®);= 0; TW5£0 > cemiera

q"* =— q/?/12E1

R1% = — q/2/18EI1 * /3 * 1/2 = — /*/108E1
R2% = _ ¢/2/18EI * (/6 = — q/*/108EI
R3%) = — g/2/72EI * (/9 = — q[*/648EI

T(*) _ T(*) _ RI(*)+ RZ(*) + R3(*)
> T, = q/3/108EI + q/*/108EI + q/*/648EI

> [T, = 13q/*/648E1 = g,
> [T®, = 13q//648E1 = g3

B
%
(/3 /3 /3
q//3
A B
\ 4
ql/ 6T ql/ 6T

/3 /3 /3

q?/72

.||l|||||||||||||||‘“"i:::||||||||||”|||||||||||l' q?/18

Zs

5q/%/72EI :

alilinNeg

7 _
/3 /3 /3
R3(*)
l R2%)
|r1 )
v
T(*)A T(*)B




MTRAVE ELASTICA

_Abbassamenti e rotazioni notevoli.
-> Per ottenere il risultato voluto, sostituire alle carichi e lunghezze in analisi.
Forze applicate.
op = /251 0 = TF/128E1 M l P s
Ug = FL/3E1 op = 5F/7/128E1 7, 7.
/4 30/4
PA = Pp N J /8 B @p = 6F?/125E1 A (pAl Vi B
/16 L S S el
o _ _ op = 4170412561 7. 7
/5 41/5
oa = SF/81EI \ A l (EB _B 0A= QB
op = 4F/7/81EI 7. 7 3F/225E1 7
/3 2//3
®A= QB . ‘pA\\) l l (%8 B Qa = 55F(?/1296E1
B R
o 7 7 op = 35F7/1296E1 7
/3 /3 /3 /6 50/6




SPOSTAMENTI, ROTAZIONI, CURVATUE

Forze applicate (formula generale). Carichi distribuiti.
QA= Ps B _
PA= O
Fo* (Z-b?)* 1 1T ATYB
GEI/ ) 7 q//24E1
O = 7
Fa ( az) * 1 a b )
6EL/ )
¢
PA= 0B vvvy
13q/*/648E1 % / """""""""""" K W
Coppie di forze. /3 /3
¢ = X//E1 ®A = 0B I _B
Vg = X[/2E1 37q/*/3000Ex /j """""""""""""""" 7
4 ) 20/5 l/5 20/3

@a = X//6EI

o = X//3E1 .




B.3
STRUTTURE IPERSTATICHE

MTRAVE ELASTICA

Una trave pud, al massimo, %
essere fre volte iperstatica (a

destra), e cioé con tre gradi di
vincolo in piu di un sistema %
isostatico.

In questo capitolo verranno analizzate strutture una volta
iperstatiche, con un grado di vincolo in piu.

_Calcolo dell’incognita iperstatica mediante il metodo delle forze.

.

(S

Il problema prevede la soluzione di quattro incognite.
| mezzi a disposizione sono le tre equazioni
fondamentali della statica, che non permettono di
risolvere tutte le incognite.

togliere il vincolo in pil, rendendo la struttura
isostatica, e caricarla con il carico reale. = in questo
caso ¢ stato tolto I'appoggio, ma & possibile anche
rendere l'incastro una cerniera.

Senza I'appoggio, la struttura si deforma nel modo
illustrato a fianco, individuando [I'abbassamento
Vs(P).

il vincolo tolto in B produceva una reazione incognita;
se il vincolo fosse rimasto al suo posto 'abbassamen-
to sarebbe stato zero -> il vincolo imponeva una
relazione di congruenza in quel punto. - la reazione
deve produrre uno spostamento verticale uguale in
modulo ma di verso opposto a quello del sistema
senza appoggio; si andra a calcolare proprio tale
abbassamento, che prende il nome di incognita
iperstatica (X).



STRUTTURE IPERSTATIC@

L'incognita iperstatica, una volta calcolata, viene sostituita nel calcolo delle reazioni vincolari, e
da la possibilita di risolvere la struttura. = N.b. sbagliare I'incognita iperstatica significa
trovare una possibile configurazione equilibrata, ma non congruente con il sistema di partenza.

Tale metodo prende il nome di metodo delle forze > le incognite sono le forze, e fra tute le
soluzioni equilibrate possibili bisogna ricercare quella che restituisce la congruenza. Dunque €
necessario verificare che la sovrapposizione degli effetti dei due sistemi, l'isostatico (ISO) e
quello dell'incognita iperstatica (INC), restituisca la coerenza iniziale.

Al fine di restituire la congruenza & necessario redigere un’equazione di congruenza prima di
procedere con i calcoli:

Vs(P)+ Up(X)=0

\ sistema Reale, carico reale (1S0-sR) \ sistema Fittizio, carico reale (ISO-sF) \

%

P//2E1 A B

o~
(S

‘ @ } P2
M

q* =~ PI/2E1
R = _ PI/2EI * //2 * 1/2 = — PI?/8EI
M@y — P2/SEL* 5//6 =0 > (M%), = SPP/ASEI = Ug(P))

| sistema Reale, incognita iperstatica (INC-sR)| | sistema Fittizio, incognita iperstatica (INC-sF)]

X//EX

q* = XV/EI
R = _ XV/EL * [ * 1/2 = — X/?/2EI

M%)y — XZ/2E1* 20/3 =0 > [M® = XP/3E1 = Up(X)]

e quindi:

Up(P) + Up(X)=0
5P{3/48EI1 + X/3/3E1 = 0
dividendo tutto per /* ed EI

> 5P/48 - X/3=0
>(X =5P/16 = Vg

-> ora il problema & risolvibile con i metodi conosciuti:
tre incognite, tre equazioni di equilibrio.

A T B
Va 5P/16

< >




Per rendere il sistema isostatico, & anche possibile togliere un grado di vincolo all'incastro,
anziché eliminare I'appoggio; in questo caso lincognita iperstatica sarebbe divenuta la
rotazione e non 'abbassamento, poiché l'incastro diverrebbe una cerniera.

La condizione di congruenza deve imporre che fra tutti i valori della coppia X sia trovato quello
che permette una rotazione nulla in A.

¢s(P) + ¢p(X) =0

P (e

q"*) = — Pl/4EI

R1% = R2%) = _ PI/4E1 * (/2 * 1/2 = — P/?/16EI

M, + PI2/16EI * //3 + PI2/16EI * 2//3 — T, * (=0
TG, = P2/48EI + 2P/2/48E1 { T®), = P?/16EI1 = @A(P)]

MTRAVE ELASTICA

M |||||||I§:||||IIII|||m......, [X

q(*) —
R(*) =

X/EI

— X/EI

— XV/EL * [ * 1/2 = - X{/2EI

M@y + X2 * 203 — T, * =0

N [T(*)A = X//3E1 = (PA(X)}

Pa(P) + 0A(X) =0
- —P/2/16E1 + X//3E1=0

> -Pl/16+X/3=0

(X =3P//16 =M,

3PU/16

Riassumendo, per risolvere una struttura iperstatica:

a.
b.

individuare un possibile schema isostatico;

disegnare la deformata qualitativa sia del sistema iperstatico che dell'isostatico, dalle
quali & possibile accorgersi cosa é stato tolto dal sistema iperstatico;

scrivere un’equazione di congruenza;

risolvere l'incognita iperstatica ed utilizzarla nel sistema reale.



STRUTTURE IPERSTATIC@

_Appendici isostatiche ed oculatezza di risoluzione. N.b. e possibile inserire nel calcolo risultati gia noti = per un tratto di struttura vincolato da
una cerniera ed un appoggio, di lunghezza pari a /, con una coppia C applicata ad un vincolo,

N

modi: il valore di T’ nel vincolo dove agisce la coppia sara C * //3EI, mentre nellestremo non

Pl Il sistema iperstatico a lato pud essere affrontato in vari
A Y A "o - & possibile togliere I'appoggio in B (metodo a), caricato sara C * {/6EI (vedi esercizio n.18).
%ﬁ

ponendo la congruenza nell’abbassamento in tale
punto;
- oppure togliere un grado di vincolo all'incastro
7 2 (metodo b), ottenendo pero un sistema fittizio di diffi-
coltosa risoluzione.

metodo a.

N
~
—

=
<
[\
W
<
\S)

7

X/EI

Ma si nota che il carico P & applicato su di un’appendice isostatica, ovvero una porzione di
struttura della quale tutto € noto a priori = si intende lo sbalzo come una mensola, che
caricata sull'estremo libero crea in corrispondenza dell'appoggio B un momento di incastro. 2>
& possibile portare il carico nel vincolo, applicando un conseguente momento di trasporto.

metodo c.

\

.

‘—
=
<
[\

EN
&Y,

w [ s

T, = X * I[/3E1> [T, = X//3E1 = 9A(X) |




oA(P) + 0A(X) =0
- PZ/12E1-X//3E1=0

2> Pl/12-X/3=0

> X=Pl/4 =M,

Trovata l'incognita iperstatica, si ritorna nel sistema di partenza calcolando le altre reazioni
mediante le tre equazioni cardinali della statica.

Pl/4
SHi=0 > Hy=0 Y Pl
IVi=0 > Va+Vg—P=0 N B C
SMA=0 > —PU/4A—-P*3[2+V*(=0 VJ VJ

2> Vg =3P/2+P/4 2>|Vy=T7P/4
2>V =-3P/4 0 )

Redigendo il diagramma di corpo libero, & possibile tracciare la linea delle pressioni > N.b. &
impossibile tracciare la linea delle pressioni a priori, poiché pud essere tracciata solamente
nell'unico sistema equilibrato possibile, dato dalla soluzione del'incognita iperstatica.

- A differenza dei capitoli dedicati alla statica della trave, nei calcoli compariranno risultati
anche negativi, che stabiliranno il verso delle reazioni a seconda della convenzione stabilita.

3p/4 l Pl
@ ]‘ B C
P4 7p/4
4 2

MTRAVE ELASTICA

_Calcolo dell'incognita iperstatica operando una sconnessione interna.

P
(PBA/ B e C
RSAN e

B

(/

Scartata l'ipotesi di togliere 'appoggio in C
(sistema fittizio complicato), lipotesi piu
ragionevole sarebbe togliere I'appoggio in
B e calcolare nel medesimo punto 'incogni-
ta iperstatica come abbassamento.

Ma in B si verifica la medesima quantita di
rotazione nel tratto BA come nel tratto BC, l

e quindi ¢’é continuita di momento fra i due

tratti > la trave pud essere intesa come An B C
discontinua in B; la congruenza impone f E é E
I'uguaglianza della rotazione fra i due tratti QO
PBaA = PBC I J
Calcolare lincognita iperstatica in B
permette di conoscere il valore del momen- A X7 P §X C
to flettente in quel dato punto, e quindi di f\i \
utilizzarlo nel calcolo delle reazioni vincolari. 00
In questo caso, quindi, non si calcola una
reazione vincolare esterna ma la caratteri- , .
14

stica di sollecitazione momento flettente.

E utile disegnare la struttura per pezzi
separati, al fine di comporre I'equazione di
congruenza e di controllare il segno delle
rotazioni. >

Da notare, inoltre, che tutti i risultati ricercati
sono gia stati trovati negli esercizi svolti in
precedenza: le rotazioni prodotte da X
sono pari a X//3El, e la rotazione in B

prodotta da P é P{?/16EL
> Ty = PI/4EI * /2 * 1/2 = P?/16E1

¢s(P) + 9a(X) = ¢p(X)
- P2/16EI + (-X//3EI) = X//3EIl

> Pl/16 -2X/3=0
>(X =3P//32 = Mg




Noto il valore del momento in B, la struttura
e analizzabile per parti con equazioni
ausiliarie > analogamente alla cerniera
interna, in questo caso l'incognita ipersta-
tica fornisce un’informazione riguardo il
momento flettente in un dato punto, ed il
metodo di calcolo diviene analogo.

ZVIZO > VA+VB+Vc—P:0

A

Pl 3P/32

STRUTTURE IPERSTATIC@

"

Vi

SN
%‘(&

o)

Ve

XMBap=0 > M+P*/2 -V, */-3P//32=0

>(Va=13P/32)

2MBgc=0 > M+ Vc*+3PI32=0

2>V =-3P/32
Vg=P—-Vc—-VA=P+3P/32-13P/32
>V =11P/16

In verifica dei risultati ottenuti, redigere una
equazione globale alla rotazione.

2XMi=0

Al

i
1%

|

B

3P/32) ¢

T13P/32

[

Tl 1P/16

M —13P/32 * /2 + 19P/32 * (/2 —=3P/32 * (=0
>M = 13P//64 — 19P//64 + 3P//32 > M =0

A M
T
13P/32

<«

sezione 01
0<x</2

T >[T=13p32]
Mo > M- 13p/32%2.~ 0

per = =0 9
per == (/2 >[M = 13P//64]

€

'
'
'

Sk
0
'
'
'
'

P

sezione 02
0<x<!i2

P

A 5 D”

13P/32

(T > T-13P32+P=0->{T=-19P/32 —

2 @

@0 > M- 13P/32*(U2 + ) + P * =0

per ~0 >M= 137764

per = =1{/2 > M= 13P//64 + 13P//64 — P//2 >\M = —3P//32|c.v.d.

sezione 03
0<r</

T >T-13P32+P-11P/16 =0

>(T=3p/32)

e gy

T13P/32 TIIP/16

{ oo

]@o > M — 13P32%(( + ) + P * (/2 + ) — 11P/16%. =0

per =0 >[M=-3P//32]

per == > M= 13P//32 + 13P//32 — P//2— P/ + 11P//16 >(M =0

Per conoscere dove il momento &
nullo allinterno della struttura, €
sufficiente scrivere un equilibrio alla
rotazione fra 11P/16 e 3P/32.

11P/16% 2 — 3P/32* (I + )= 0
> 3P./32 + 11P+/16 = 3PI/32

> 192/32 =30/32 2| =3{/19

13%2] # T 3p/32

19P/32] -

3P€/32[

13P“6/64I

220/19




_Esercizio n.22

N.b. in B si considerano due semplifi-
cazioni:

a. l'angolo & indeformabile;

b. considerando [indeformabilita
assiale della trave, il punto B
non si abbassa come avverreb-
be nella realta.

Date queste due informazioni, si nota
che la situazione & analoga a quella
dellesempio precedente = in B si
verifica la medesima quantita di rota-
zione nel tratto AB come nel tratto
BC, e quindi c'é continuita di momen-
to fra i due tratti.

0s(P) + 9p(X) = ¢(X)

- P(?/16EI + (-X//3EI) = X//3EI
2> Pl/16 -2X/3=0
>X =3P//32 = M;]

=

o=

MTRAVE ELASTICA

EHIZO > HA""HC:O > HA:—HC
2Vi=0 > Vo, +Vc-P=0

IMBs=0 > M+P*/2 -V, */-3P//32=0

>|Va=13P/32

2XMBgc=0 > M+Hc*/ +3P//32=0

NPT
S[Ho=302 |

Vc=P-V,=P-13P/32
>V =19P/32
XMi=0

M — 13P/32 * (/2 + 19P/32 * [/2 —3P/32 * [ =0
>M = 13P//64 — 19P//64 + 3P//32 > M =0

> P*x— 13P/32* ({12 + 2)=0
> Px+ 13P«/32 =11Pl/32

> 452/32 = 110/32 D= = 11//45

p|  3pPy32
HA A‘
ol
L
He ¢
Ve
¢
Pl‘x
3p/32—y 1B
“asps2 N
’
Lo
o
\3P/32
19pP/321

B —

{



sezione 01
0<x<!2

N >N=-3p32
|T >T=13p32)

]@o > M- 13P/32%2 =0

per « =0 9
per = = /2 >[M = 13PU/64]

sezione 02
0<x<i)2

N >N=-3p32
T > T-13P32+P=0->T=-19P/32]

1@0 S M 13P/32%(U2+ )+ P * =0

per =0 >M = 13P//64]

STRUTTURE IPERSTATICE

M
3P/32%Bw
T
13p/32

R —
€

13P/32

«—<—>

{2 %

per = =//2 > M= 13Pl/64 + 13P//64 — P//2 >|M = — 3P(/32

sezione 03
0<x<?

N >N=—1op32)

T >T-3p32)

@ > M +3Pl/32%x =0

per « =0 —)
per = ={ >M=-3P//32

3P/32
19P/32

3P/32 A-T 1
R TN
: L
R[e
f3p32
19P/321 %
¢
3e/32] (I
=O=
N
19P/32
13P/32‘ s 3PU32

13P€/64[ mﬂ% I

«————>

56//45

3?@/32




_Esercizio n.23

{2

N.b. il tratto AB costituisce una
appendice isostatica, e quindi la forza
P viene traslata in B applicando un
momento di trasporto (vedi p. 60).

Da notare, inoltre, che la forza P
trasportata nel vincolo non ha
rilevanza alcuna ai fini della flessione,
in quanto assorbita direttamente dal
vincolo > si tiene conto solamente
della coppia applicata.

Oc(P) + oc(X) = @c(X)

> — P?/12E1 + (-X//3EI) = X//3E1
> -Pl/12-2X/3=0
>X=-P//8 =M]

o~

P2

MTRAVE ELASTICA

ZHIZO 9 HB+HD:0 9 HA:—HC

YVi=0 > Vg+Vp-P=0

2MCgc=0 > M+P*3//2 - Vg*/+ Pl/8 =0

> Vp=3P/2+P/8 2> |Vg=13P/8

EMCep=0 > M+Hp*/ —Pl/8=0

N
S[Hy=—Pi§]

Vp=P-V,=P-13P/8
>|Vp=-5P/8

2Mi=0
M+P*(/2-5P/8* [ +P/8* (=0
>M =5P//8—Pl/8—PL>M=0

XMc=0
> P*(I/2+z)— 13P/8*2=0
> Pz + 13Pz/8 =Pi2

> 52/8 =112 >z = 41/5)

A

{2

o~




sezione 01
0<x</2

N >N=0
\T >fr=-p)

]@0 >M+P*r=0

per =0 9
per = =1{/2 9

sezione 02
0<x<!

N >N=pi)
(T >T+P-13P8=0 >

1@0 > M+P* (U2 + )~ 13P/8*2=0

per = =0 9

per © =0 > M= 13P//8 — Pl/2 — P/ > M = P{/8

sezione 03
0<x<!

TN >N=sps

T >-_pi)

M > Mg =0

per = ~0 > =PI
per = =1 9

STRUTTURE IPERSTATICE

13P/8

5P/8

P/8

2

5P/8

5P/8

<>




MTRAVE ELASTICA

. % - struttura simmetrica,
_Esercizio n.24 | 1 | caricata simmetricamente.

> P2\2/6EI + (—X/N2/3ET) = X/\2/3E1 — P/2\2/6EI
> P2\2/6EI + P/2N2/6EI = X/\2/3EI + X/\2/3EI
> Pl3=2X/3

>[X=Pi2=M|

Pl/2

o~
o~
o~
o~

2Hi=0 > Hy+Hp,—-P+P=0 2> Hz=-Hp

ZVIZO 9 VB+VD:0 9 VB:—VD

YSMB=0 > M+ Vp*2/+P* —P*/=0

3(Vo=0
3Ve=0

XMCpc=0 > M—Pl/2+Hg*/.=0

N7
SlHy=-02)

Pc*(P) + 0™ (X) = 9c™(X) + ocH(P)




P2
A
P

R

<

sezione 01
0<x<Ah2

W SN=P
T >[1=PA2
Mo > M-PA2*%-=0

per = =0 9
per = =2 9

P2
A

PA

2 P22
P/272 -

sezione 02
0<x <2

& D NHPA2+P2N2=0 >
T >T+PA2+P2\2=0 >

Mo > M —PA2¥N2 + PN2*x + P/2N2% 2 = 0

per =0 9
per = =M2 >M=Pl-Pl-P/2=0 > M=—Pi/2]

STRUTTURE IPERSTATICE

sezione 03
0<x< 2

N >N=7
\T >T=—pr
@/[0 > M-PA2*2=0

per » =0 9
per = = /2 9

sezione 04
0<x<Nh2

"V > N+PA2+P2V2=0 > [N=-3P2\2)
/T >T-PR2-P22=0 > [T=3P2\2)

Q\/[ 0 > M—PA2*N2 + PA2*x + P/2\2%2 = 0

per =0 SM=P/|
pere=Mn2 >M=P/—P/-P//2=0 > [M=-P//2




MTRAVE ELASTICA

-> struttura simmetrica,
caricata antimetricamente.

_Esercizio n.25

N.b. carico simmetrico e struttura simmetrica: OcE(P) + (X)) = c(X) + ¢c2(P)
-> grafici di momento e sforzo normale simmetrici, taglio antimetrico.
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> P2V2/6EI + (-X/N2/3EI) = X/N2/3E1 + P2V2/6EI P/Xz
> P2V2/6EI - PN2/6E1 = X/N2/3E1 + X/N2/3EI PN
> 0=2X/3
>X=0=Md SRy
T
X=0 sezione 01
0<x<n2

N SN
/T >-el3

Mo > M-PA2%-=0

per =0 9
L L L L per = ="2 >M=P/|

P2
YHi=0 > Hg+Hp+2P=0 A

PA
ZVIZO > VB+VD:0 > VB:*VD

SMB=0 > M+ Vp*2l—P*/—P*/=0

>[Vp=P | 2 .
SVa=-r g
SMCuc=0 > M+ Hg*/ + Vg* =0 sezione 02
>Hp=-P 0<x<A2
QHD=P—2P 9 HD:—P

& P N+PA2-PV2=0 > [N=PA2]
2Mi=0
M+P*20-2P*(=0 >M=0 T >T+PA2+P2V2=0 > (T=—PA2

M)o > M —PN2*N2 + P/N2* =0
per =0 9
per=/"N2 >M=P/—P/ >
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P

sezione 03
0<<N2 M
T [°%
<N >N-p) v v
XTI >T=p2] ¢ ¢ ¢ ’
@Io > M+PA2%2=0

per =0 9
per = = (\2 9

PA

P

2

\ >
sezione 04 »

0<x<h?2

&V >N-PA2+P\V2=0 >
ST >T+pPR2+P22=0 >

Q\/I 0 > M—PA2*\2 + PA2*x=0

per « =0 9
pere=MR2 >M=P/—-Pl >

N.b. carico antimetrico e struttura simmetrica:
-> grafici di momento e sforzo normale antimetrici, taglio simmetrico.
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_Esercizio n.26 N.b. il risultato della rotazione prodotta dalle due forze P nel tratto BC & data dal risultato
precedentemente contemplato nell'esercizio n.19 > forze in //3; T = P(2/9EL.

0,181P/
i3 @
/3 )
» P /3
/ » /3
YHi=0 > Hg +Hp+2P=0 P 3
Hp Hp\ D E
A . B ——
i 0 2 2 / Vi Vb TP
>Vi=0 > Vg+Vp-P+P=0
2> Vg=-Vp 12 { 12

SMD=0 > M- Vg*l+ P*3//2 + P*¥(/2 — P*2//3 —P*//3=0

> Vg=2P-P >[V=P]

Vo)

2MCcp=0 > M +Hp*/—P*/+P*3//2+0,181P/ =0

> Hp=P-1,5P—0,181P > [Hp,=—0,681P
> Hy=-2P - (-0,681P) >[Hy = 1,319P

@c*(P) + 9™ (P+P) + 0c™(X) = 9c™(X) + @c™(P)

> — P2/12EI + PI2/9EL + (-X//3ET) = XIN2/3E1 + (— P\2/12E) IMi=0

E _ E % / =
= — PE/12EX+ P/OEX + PI2/12B1 = XN2/3E1 + X//3EI M PRI2-0.834p 2R 520
> _ P12+ P9 + PIN2/12 = XN2/3 + X/3 >M=-0,5P+0,834P0— 0,333P/

) >M=0
- —0,0833P/+0,1111P/ +0,1179P/=0,4714X + 0,3333X

- 0,1457P(=0,8047X
>(X=0,181P/= M|




MTRAVE ELASTICA

sezione 01 1\‘7
A
<</ M
0<x<i2 é\
? M 77
_>
N >[N=0 N P, N
A T 3
U
IT = . v,
“ sezione 04 Pl 1.319p 12/3
Z@o > M+P*2=0 0<x<l/3 R ’
perxc=0 > TN P
>N+P-P=0 > |N=0
per =102 >M=-0,5P/ )
R !
N T >|T=-0,681P
A
M
16 02 7
(S)ei'o—”iom %;7 j@o > M+ P*//2 — 1319P*(/3 + /3 + ) + PH(U/3 + ) + P*. =0
> > i
© ] P 1319p per = =0 > M = 0,44P/ + 0,44P/ — 0,5P/— 0,333P/ > M = 0,047P/
tN sN+p_p=0> A Bl per = =//3 > M= 0,44P( + 0,44P( + 0,44P( — 0,5P/ — 0,333P/ — 0,333P/ — 0,333P/
— P > M=-0,18P/
T >T=1319pP "
]@o > M +P*/2—1,319P*2=0
per =0 > M=-0,5P/
per = (/3 > M= 0,44P/— 0,5P/ > [M =-0,06P/
N )
7IAN r
vr| \, 0<x<(/2 v
sezione 03 P17 I _ N
- P @< «— T E
0<x</3 p| — N > IP
1,319P I 3
H—
IN SN+P P-0>N=0 N 7 >
. P
T >{T=0319P " Q\/Io > M-P*x=0
’ perxz=0 >
]@o > M +P*/2 = 1,319P*((/3 + ) + P*2.=0 ) :
per = =102 >M=0,5P/
per =0 > M= 0,44P/— 0,5P/ > [M =-0,06P/
per = = (/3 > M = 0,44P/ + 0,44P/ — 0,5P/ — 0,333P/ > [M = 0,047P/
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sezione 06
0<=<A2

"W >N+0,707P -0,226P =0 >
ST >T+0707P—1,189P=0 > [T =0481P

0,707P 0,707P

N2 " ) "

Q\/[o > M = 0,707P*(/2N2 — 0,707P*(//2N2 + =) + 1,189P*. = 0

N
per » =0 9
per = =/\2 > M=0,25P/+025P/+ P/~ 1,681 =0 > M=-0,181P/
T
M
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ANALISI DELLA DEFORMAZIONE

\ECCANICA DEI SOLIDI

Considerando tutti i punti di cui e costituito il concio in seguito
alla deformazione flessionale, sotto 'asse neutro si allontanano e
sopra si avvicinano. > €& evidente che non tutti i materiali
possono resistere a determinati tipi di deformazione, e che la
deformazione flessionale non esaurisce le possibili deformazioni
dei corpi. Verranno quindi affrontati i tipi di deformazione e le
deformazioni lecite per ogni materiale.

Ad esempio: un telaio metalli-
co accoppiato ad una lastra di
vetro.

> Il metallo si deforma
molto, il vetro quasi per nulla.
- & necessario studiare la
compatibilita fra materiali, e
quindi conoscerne le modalita
di deformazione.

vz

| | 2 ”

Ad esempio, i telai metallici di Mies Van der Rohe sono tutti sovradimensionati, al fine di
deformarsi meno - la struttura reggerebbe ugualmente anche con dimensioni minori, ma si
deformerebbe troppo spaccando il vetro.

Le teorie sulla deformazione sono state 4 4

; . - 7 %
formalizzate grazie a Cauchy, che ha definito la
deformazione come il rapporto fra le variazioni di
lunghezza di un concio e la lunghezza iniziale
dello stesso.

fo 4
="l Al
€ (deformazione) = ?0 = XO
o _ o

-> dilatazione lineare specifica.
¢ > 0 -> elongazione lineare specifica T

€ < 0 -> contrazione lineare specifica

Tutto cid, pero, non € sufficiente ad interpretare tutte le deformazioni compatibili con i materiali.



ANALISI DELLA DEFORMAZIOE

Si analizzi un oggetto costituito da un insieme di punti
materiali > € necessario individuare la posizione di ciascun
punto, e quindi si pone un sistema di riferimento.

rp € il raggio che congiunge il punto P, appartenente
alloggetto, con l'origine degli assi.

L'oggetto subisce una trasformazione dallo stato B, allo stato
B,.

p’ =Tp+ Sp 1= (7,1, 2)

a. innanzitutto, 'oggetto subisce una traslazione, con tre
componenti u, v, w.
Per semplicita, nel caso in figura si considerano solo le
componenti v e w associate al piano . z.

2> sp=t (v,w)

>
7

b. l'oggetto ruota. La rotazione di un punto dipende dalla
rotazione  piu la distanza d dal centro di rotazione.
2> sp=t+o*d

c. quanto analizzato in precedenza fa ancora parte del
movimento rigido dell'oggetto, che alla fine va anche
stirato. > €& possibile porre dei vincoli al movimento
rigido, ma non bloccare la deformazione.

2> sp=t+wd+e

-> la € € l'unica parte dell'espressione relativa alla deforma-

zione pura. Non & possibile vincolarla poiché fa parte delle

proprieta dei materiali stessi.




U¥
gE

N.b. ogni punto deve mantenere la sua identita.

< Qui 'oggetto si compenetrerebbe, non & realmente accet-
tabile. = nulla si crea - nulla si distrugge, i punti si fanno piu
vicini o pit lontani ma non si compenetrano > teoria della
permanenza della materia.

Saranno trattate solamente trasformazioni topologiche.

< il punto A, nella configurazione By punto di frontiera, si
sdoppia nella configurazione B ed il punto B, prima interno,
diviene di frontiera. Non saranno affrontate situazioni di
questo tipo, che vengono analizzate nella meccanica della
frattura > le deformazioni studiate saranno sempre
reversibili ed elastiche.

\ECCANICA DEI SOLIDI

_Dilatazione lineare specifica
(variazione di dimensione)

| punti in direzione delle forze si allontanano >

A’B’-AB
&= — ——
AB

- per sapere come si deforma un oggetto e
necessario conoscere due punti su di esso, e la
deformazione relativa fra di essi.

In termini differenziali:

(Ou+ 0x)—0x ou

O0x O0x

-> esiste una relazione funzionale fra spostamento e
deformazione.

u ¢ la funzione spostamento secondo la direzione «;
facendo la derivata secondo - si ottiene la dilatazio-
ne lineare specifica secondo + stessa.

(Ov+ dy)—0y ov

g, = =
Oy Oy
(Ow+ 0z)—0z ow

g, = =
oz 0z

N.b. questo tipo di deformazione implica che gli angoli mantengano la stessa entita.

A
o A’
A
B
‘ j\ ,,—“1 B’
l v
%/ \
TI 777777777777 4 OV
ek
P .
° £
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N
_Variazione angolare o scorrimento puro - -esempio pratico-
(variazione di forma) / /
Ponendo che:  u=K*
v=K*x»
w=0 - (caso piano)
a4 (Pu+ 8x)— o= ou
ou ,'/l /r'/ 8% = =
—> Or O0x
T T s !
o P = (ov+ 8%) - 6% ov
oy - 8% = 2 = B Y
o< Ip ] ov 7 7
o 0 o
o y = — s DO C(LD
O0x 8%
Con un angolo sufficientemente piccolo & possibile confondere la tangente dell’angolo con
I'angolo stesso. Yoy = O(K*x)/0x + a(K*%)/a% =2K
A (0,0 B (1,00 ©
ou
tg(ll = =~ 0 tg(lz = = 0
Ox 6%
{ =K(xa)=K*0=0 y
La deformazione é paria > I1/2 -0 = a; + ay, e quindi: va=K(ya) =K*0=0 o
D’
ug =K K*0=0 i
y ov N ou { B = K(zp) = |
wy ve = K(ys) = K*1 = §
0r Oy B
ow ou uc =K(xc)=K*1 =K A *
’Y:LZ =
dx oz ve=K(yc) =K*1 =K
Y= Ow + ov up = K(op) =K*1 =
) Oy oz Vb =K(yp) =K*0=0




C.2
TEORIA DELLA TENSIONE

\ECCANICA DEI SOLIDI

Le forze possono essere distinguibili per tipo e per forma.
- forze di volume: dipendono dalla gravita > es. il peso proprio della struttura.
- forze di superficie: esercitate dall’ambiente sulla struttura - es. I'azione del vento su di
una parete.

Forza [Newton]
Area [mm?]

Fs
Si consideri ad esempio un elemento B Fn o /
soggetto ad un sistema n di forze F in =

equilibrio. Tagliando il medesimo con un
piano di normale o ed eliminandone la
parte destra, si nota che la parte eliminata

trasmetteva alla restante un insieme di
azioni, che saranno ora oggetto di analisi. \
F,

74
F,

Dimensionalmente, la tensione é data da:

Sia preso un punto a sulla sezione
generata dal piano, ed il suo intorno AA.

n -> direzione normale al piano di sezione;
t, = forza specifica secondo la direzione n.

Per AA tendente a zero, t, € il vettore
tensione.

N
Vi

E possibile scomporre il vettore t, secon-
do una componente ortogonale ¢ ed una
componente tangenziale T, sempre rispet-
to al piano a.

O, ~> tensioni normali alla superficie.
T, —> tensioni tangenziali alla superficie.



Il vettore t, dipendera dal punto in cui si
opera la sezione, dalle forze agenti
considerate, dall'inclinazione del piano di
sezione e dalla direzione normale r.

t, = (=, n)

-> a parita di azioni esterne, nella situa-
zione A si hanno solamente componenti
normali alla sezione, nella B sia tangen-
ziali che normali.

Quindi:

t = lim R
n -
AA0 ( A )

- limite di una generica risultante R e di
una generica area A.

t, = (T/a ﬂ) Bl

-> componente tangenziale

1=

a8

-> componente allineata con n

[

TEORIADELLA TENSIOE

_Teorema di Cauchy.

Considerando l'intorno del punto P
do* dy * dz >

| piani dellintorno del punto sono indivi-
duati dalle perpendicolari al sistema di
riferimento ortogonale -, Yy Z.

Considerando solamente la tensione in %
il vettore t% viene scomposto secondo la
componente ortogonale G, e le compo-

nentitangenti T, e T, ..

(V'.
dz .
P
p "
—
4
z
(I
<t =
|
S
-z
|z
ty
-y
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In pratica si scompone un vettore nello T,. Questo passaggio prende il nome di teorema di reciprocita delle tensioni tangenziali, e
spazio > t, & la diagonale di un ‘ permette di lavorare con un modello di calcolo semplificato. Espresso in forma matriciale:
parallelepipedo.

Il primo pedice (,, & lidentificativo della

L ) . . > Ggw T2 =Tz

direzione normale al piano, il secondo :

(., della direzione del vettore. T2y = Ty

-> le incognite si riducono da nove a sei.
N.b. I'eguaglianza si verifica per il modulo
-~ ~N delle tensioni; le direzioni restano comun-

Ponendo in forma matriciale il tutto, si c. T, T,. ue diverse -> 1 piani in cui giacciono le
forma un tensore, owvero una fabella / ?ensioni tan enzigli eguali gono infatti
ordinata i cui componenti sono vettori. dicol 9 g
T, G, T. | perpendicolari.
A questo punto & necessario trovare un ‘ L ™ Tutto id & utile per individuare un piano
modo di ridurre il numero di incognite in u € ulile p . ire un p
gioco sulla cui ortogonale si verifichino solo
' L Tz Tz, O; ) trazione e compressione. = nella realta,
le lesioni si formano ortogonalmente alla
direzione di trazione; in questo caso, le
azioni tangenziali sono tutte pari a zero.
Considerando la faccia superiore del cubo 7 ~ lobiettivo finale & la ricerca delle 28
C L ) o direzioni principali di trazione e compres-
di dimensioni d- * d., * dz (owvero il A sione TN
piano =), scrivere le tensioni associate T,
ad essa e calcolare un equilibrio alla 11
o o (o
rotazione in o. dy | < ¢ ° >
G. | e Studiando ad esempio il piano fessurativo
—I=r x di una trave, si nota che la fessura si
. inclina ortogonalmente ai piani principali,
Mo =0 an dove si verifica solo trazione e compres-
M-t *de/2 -1, *dx/2+7, ,,/,,,,,*d%/z +1T,.*dy/2=0 < R sione.
_ *d * = . I . .
>M Ty do + Ty dy=0 Da notare che il taglio & legato ad azioni UHJEM” T

di tipo tangenziale t, mentre il momento &
legato alle azioni normali .

Considerando il fatto che d- e d., sono uguali, essendo le dimensioni infinitesime del cubo, le — l'andamento del quadro fessurativo & M

due tensioni sono uguali, legato l'inclinazione dei piani principali, ed WMHJ ﬁ W

il taglio esiste nei tratti di fessura inclinata
>-T,+1,.=0> 1, =1, dove si verificano azioni tangenziali.
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L’obiettivo finale & arrivare alla condizione in cui non si verificano azioni tangenziali. _Cerchio di Mokhr.

~ ~ ~ ~ Tale costruzione geometrica serve a descri-
T., o1 0 0 vere graficamente lo stato tensionale di un
punto.

Si inizia ponendo un sistema che abbia in
ascissa le tensioni normali o, ed in ordinata
le tensioni tangenziali t.

Successivamente verra tracciato un cerchio
che, al variare dell'angolo, restituira valori o 1
€ T per un piano di normale n.

i o i o
9 [simm.] z 9 [simm.] iy

Al fine di ottenere questo risultato, € utile la trattazione del paragrafo successivo sul cerchio di
Mohr, ovvero una modalita di rappresentazione grafica dello stato tensionale di un punto.

a. disegnare tre punti.

- a=(0,,0) - tensione sul piano di normale ;

- b=(o,, 0) > tensione sul piano di normale .,;

- m=(o,, Ty ) punto chiamato polo della rappresentazione.

porre ad esempio ¢, =3, o, =1, 7, =-2.

b. trovare il centro C fra b ed a.
2 (c.-0)2=C

c. tracciare il raggio R del cerchio
pari al segmento Cm, e disegnare
la circonferenza.




d. da notare che il punto m rappre-
senta il piano =, ruotato.
Se, per ipotesi, si intendesse cono-
scere lo stato tensionale di un
generico piano ¢, € sufficiente
porre un piano ruotato sul piano di
partenza .

. nelle intersezioni fra il cerchio ed il
piano ¢ si ottengono nuovi valori
tensionali relativi al piano in
questione. > il cerchio di Mohr é
una costruzione geometrica per
scoprire coppie di valori o, e T, per
piani qualsiasi.

[0}

Si nota che, per passare dal piano -, al

piano ¢, l'intorno del punto ha subito una
rotazione di angolo ¢ (vedi anche p. 82).

La circonferenza ha raggio invariabile, e
quindi le combinazioni di ¢, e t, non
variano - le somma vettoriale, e cioé il
raggio, resta uguale.

S%)

S5}
0]

\ECCANICA DEI SOLIDI

R :\j ((6.—0,)2¢+1,.2

oo, = R (1 + cos(2¢))

7, = R sen(2¢)

N.b. 2¢ & un angolo al centro, mentre @ & un
angolo alla circonferenza. Per costruzione
geometrica, un angolo al centro & sempre due
volte un angolo alla circonferenza.

X

o/ )2a

Da notare che si avranno unicamente
tensioni di tipo normale o, quando la
circonferenza interseca l'asse o.

el

-> il piano dove non si verificano tensioni
tangenziali 7, € quello che passa per i
punti di intersezione fra il cerchio e l'asse
6. = la costruzione del cerchio di Mohr e
utile per 'individuazione dei piani principa-
li di sezione di una trave.




-esempio pratico-

Riprendendo I'esempio del precedente
paragrafo, & possibile analizzare lo stato
tensionale del sistema nei punti A ¢ B
mediante il cerchio di Mohr.

punto A -> presenza solo di sforzo
normale di trazione. La compressione &
nulla.

6.#0,0,=0,1,=0

-> stato monoassiale - solo una compo-
nente.

punto B -> il piano comincia a ruotare.
0.#0,0,=0, 7, #0

-> stato pluriassiale = da due a tre com-
ponenti.

o= sigma massima (max. trazione)
oy = Sigma media
oy = Sigma minima (max. compressione)

TEORIADELLA TENSIOE

T
(HE=
M
S
b C a=m
< = e
T i
_ (5\

_Stati tensionali notevoli.

Stato triassiale.

Stato biassiale.

Stato monoassiale.

Taglio puro

(particolare stato biassiale).

om=T

O

o

O

O

b=op=0om=0

on=

C
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c n 3 _Leggi costitutive dei materiali.

M ATE Rl AL' Prendere, ad esempio, una barretta di materiale qualsiasi a sezione circolare, sollecitandola
con un’azione di compressione P; I'effetto dell’azione produce una deformazione.

lo do
3 d
0—"ly Al
€= —/— = — = deformazione longitudinale.
lo lo
o —dy Ad
& = = —— = deformazione trasversale.
! do o

A trazione
9

Op [/
Se nel diagramma costitutivo o-¢, giunto al
valore o, il materiale raggiunge il suo limite di
resistenza viene detto elasto-fragile. Esistono N
materiali che presentano lo stesso limite a €
trazione ed a compressione (vetro), ed altri che
presentano valori diversi (calcestruzzo).

Go

compressione

trazione

Se superato il valore limite il materiale accetta
ancora sollecitazioni si parla di materiale duttile,
con grande capacita di adattarsi alle deforma-
zioni. Solitamente i materiali duttili resistono in
ugual modo sia a trazione che a compressione
(acciaio).

compressione




MATERIALI|

Il primo tratto del diagramma costitutivo € lineare Oy [T _Rapporti fra tensioni e deformazioni.
(sino al valore oy); in questo caso si parla di
campo lineare elastico, ovvero il legame o-g &
rappresentato da una retta. Le deformazioni in S In campo lineare elastico, le deformazioni avvengono in base a:
campo lineare elastico sono reversibili.

E, modulo di Young > |G = E*¢ |, esiste un E per ogni materiale.

Superato il valore limite o, il materiale accetta

ancora tensioni (la legge costitutiva non & pit ' o ed E si misurano in N/mmz2, mentre la deformazione € € un numero.

lineare), ma le corrispondenti deformazioni non

sono piu reversibili = campo plastico, lo scarico v, modulo di Poisson = | &t = V*€ |, v &l coefficiente di contrazione trasversale.
avviene secondo una retta parallela a quella del

€, v ed € sono numeri.

campo elastico, spostata - il materiale non puo S
piu tornare alla condizione iniziale.

Ad esempio, il campo plastico dell'acciaio si divide in: f O > &
G%‘w 9 S%¢/
c

- snervamento: auto-bloccaggio casuale e disordinato a livello mole- 1
colare. z > &
- incrudimento (hardening): il materiale puo ancora assorbire ten-
sioni, ma modifica la sua struttura sempre di pit, finché collassa. T,=T,. D> Y. =Y.
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Tz = Tuz S P
deformazione in campo elastico. > <—| T, =T, > v =7

si verifica una strizione = una sezione si contrae

piu delle altre; avviene circa a meta del campo i

plastico. Il punto centrale della strizione & il punto 4_|__/\__'_' . .
dove si verifichera la rottura -> Partendo dalle deformazioni longitudinali, bisogna legarle alle trasversali, ottenendo
una matrice a trentasei caselle.

Schematizzazioni. - S.e la matrice € piena, il materiale & detto anisotropo, ovvero ha un comportamento
Gy = Op diverso per ogni direzione.
modelli elastico — perfettamente plastici i iale ha delle direzioni priviledi | Utiizzo ¢ . ol
> non si considera che il materiale assorba - ISe i ma?enae a.de. e.fd}lrezpnl prlv[lgglate di ut|”|z|zo & detto ortotropq, elld esemplo”|
tensioni raggiunto il valore oo, ma si deforma fggng, da prestgglonl di ergptl se uti |zzgto parallelamente o perpendlco grmente alle
solamente fino alla rottura. ibre; oceupa diciotto ter_rplnl della matrlc‘:e..Anche la muratura.e assoglabl_lg ad un
materiale ortotropo, ma piu problematico: & disomogenea, e campionando in piu punti si
N ottengono risultati diversi.
elastico — plastici con incrudimento Gy=0Cp [T Se i ale s I do i e direzioni & d ) .
> si tiene conto del fatto che il materiale, anche - Sei materllae si (‘>o|rynpo.rtg ni 0 hstetc]so |mo o in tutteI e h.|r<.aZ|on| é ett.o _/sotropo,
se in campo plastico, pud assorbile ancora di esempio ca zan.te € l'acciaio. Anche il calcestruzzo e la ghiaia sono statisticamente
tensioni. materiali isotropi.




_Tensioni e deformazioni in materiali isotropi.

Prendere ad esempio un provino cubico di z

materiale isotropo. €,

Applicando uno sforzo normale di trazione ! €,
secondo % si nota che il materiale si /

allunga secondo y e si comprime nelle 0, «——— 0,

altre due direzioni.

o, :Eaﬁ/ > g, = E e

€, ed €_ sono le deformazioni trasversali,
legate ad €, tramite il coefficiente di Pois-

son, V.

-> | materiali isotropi riempiono tre termini della suddetta matrice: una deformazione
longitudinale (un modulo di Young) e due deformazioni trasversali (due coefficienti di Poisson).

c. Vo,

o, =Ee > ¢ = ; g,=g=-V¥ =— ——
E E
2z VG,

\ECCANICA DEI SOLIDI

Tirando da tutte le facce del provino:

|z
()8 VO, VO
€, = - L - O
E E E /G,,.
8% _ 09‘/ _ VG.. _ VG, G} « 1 74>6;
’ E E E %/
O, A% VG% /
SZ = — — G\ GZ
E E E Lo,

Per legare le tensioni tangenziali taglianti alle deformazioni trasversali esiste una costante di
taglio G, misurata in N/mmz2.

t.,=Gy.,
T:LZ = G Y:rz
T, =Gy,

Per materiali isotropi, G vale:
_E
2(1+v)

- un materiale isotropo € legato a due costanti: Ged E,EeVv,veG.

- E>0 > ésempre positivo, poiché non & possibile che un materiale tirato si accorci.

- G>0 ->idem.

- -1 <V <0,5 anche se per materiali strutturali € compresa fra 0 ¢ 0,5 - i materiali
strutturali non si dilatano trasversalmente quando vengono sottoposti a trazione.



Riassumendo: A o o o T, T. T,
1/E ; -v/E e |VE |-vE|-vE| 0| 010
E€ — >0

e |-VE|1E |[-wE| 0| 010

E;v 4
°c ¢t & |-vE|-wE|1E| O] 0] 0
Y.,/ 01010 yg| 0|0

1/G “
A —— Y. 010100 yg|O
G Y-, 0 0 0 0 0 |G

T ———» 'Y F

- le 'y sono collegate solo alle T con pedice uguale tramite 1/G;
-> le € sono collegate alle & con pedice uguale tramite 1/E;
-> le € sono collegate alle G con pedice diverso tramite -v/E.

Tale matrice esprime le coordinate del vettore deformazioni € e del vettore tensioni t, e viene
indicata con la lettera A\ per semplicita = noto uno stato, tensionale o deformativo, si ottiene

laltro.

o, €,

o, €,

(o8 €

t (S

T, =T, Vay =Yyu
T =Tz Yz = Yoz

Tz%,r,/ = ng ’YZ!/ = Y;g,z

[¢]

Il
>
TSN
=

-1 ) N . .
=A € (I'apice -1 indica I'inverso della matrice di partenza)

MATERIALI|

_Criteri di resistenza dei materiali.

Op = Or

materiali fragili = la tensione o
coincide con la oy, di rottura.

compressione trazione
Oc = -Or O OT = OR
; o
Si introduce dunque il concetto di

grandezza indice del pericolo (G.I.P.):

- Nei materiali fragili la G.IP. e
solamente una tensione di valore
normale, di tipo o; le T non
influiscono.

- Nei materiali duttili la G.IP. e
determinata da tutte le tensioni, sia
o che t.

Ovviamente le strutture vanno verificate
con una oy che tenga conto di un
coefficiente di sicurezza CS.

[0 R

Op = Og

materiali duttili = la tensione o,
coincide con la tensione di sner-
vamento os.

trazione
OT = Og

compressione
Oc = -Os 0

o

OR [y

[0 V2 S




Si individua a questo punto un dominio
degli stati ammissibili, entro il quale
verificare una struttura.

Portando in tre dimensioni il tutto, si
costruisce una sfera nello spazio delle
tensioni principali o1, oy, om, che raccol-
ga il dominio degli stati ammissibili.

stati ammissibili

Om

\ECCANICA DEI SOLIDI

_Modello di Galileo — Rankine.

Utilizzato per materiali fragili. E necessario verificare che le tre o principali o1, o € oy siano
minori della o7 di trazione e maggiori della ¢ di compressione.

GIP = { O1, O11, O111 }S oT

G.LP. = { o}, o1, o111 }= GC

-esempio pratico-
Parete, oggetto bidimensionale.
2>01#0,0070, 051 =0.

- il dominio & compreso fra le o
massime di compressione e trazione per
Op € Oy1.

Dopo aver disegnato un modello della
struttura e dei carichi agenti, si passa a
campionare un punto A qualsiasi, che
sara definito, come noto, da:

G:',r b G«f,/ b T’m},/-

Mediante il cerchio di Mohr vengono
analizzate o; e oy, se si trovano
allinterno  del dominio la struttura ¢
verificata, al contrario se tangenti o
esterne al dominio.

O1

gttt lll]

<A

<>
e

2>o,op=CxR

> -+ o Rl
2 2
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O _Criterio di Tresca.
Calcestruzzo. Utilizzato per materiali duttili. Le G.1.P. sono le tensioni tangenziali z, ed in particolare la T max.
Viene verificato solamente a oc di com- o[- Oy
pressione. Toax = | — | =|R| Tmax m (c,,7.,)
or di trazione = 0. > 2 L

O1 -
In-pratica, viene ristretto il campo di leggasi: T massima = valore assoluto di
dominio. o1 — oy mezzi, e cioe il raggio del cerchio /
di Mohr in valore assoluto. O1
Gc e -
On
o Quindi, per uno stato tridimensionale, il T
N.b. nei provini: Tresca enuncia: :
Il provino A, a causa degli A =1/ % . .
. Tmax = 72 * max{ (61— op); (o — om); (O —o1) §

sforzi applicati, si deforma i ;
molto piu facilmente del B.

La condizione B € piU sicura
-> ecco perché molto spesso i l

pilastri vengono ingabbiati: per —» B | B Gc =0p— O = Ot
contrastare lo spanciamento. T Gc=0p—On=0T

Oc < O — Op < OoT

> -> verificare che la t sia compresa entro le T massime a trazione e compressione.
Oj

Negli angoli superiore sinistro ed inferiore
destro lo snervamento del materiale deve
gia essere avvenuto. 3
Quindi il Tresca formula un grafico sosti- oc |
tutivo al modello di Galileo-Rankine >

_Criterio di Coulomb.

Viene utilizzato per murature, e descrive
crisi per decoesione e scivola-mento dei
piani. Si usa il piano di Mohr (o,7).

o in questo caso & la massima trazione

O

In oggetti bidimensionali (assenza di oyy):

sostenibile per il materiale. c
P Oc< 01— O =0t
Ne risulta un dominio a forma di cono. -> definisce una retta compresa fra 6c e Or.
T Oc < o1 < OoT
[ff=c—po \ Oc<01=0t
leggasi: valore assoluto di T = coesione (c) — coefficiente di attrito () per o. Si ottiene il cosiddetto esagono di Tresca, identificativo delle T massime del materiale.
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\EORIE DI DE SAINT-VENANT

D.1 .

TRAVE DI DE SAINT-VENANT
O (N
€ % OO/ /%

I modello si compone di alcuni punti cardine:

a. modello geometrico: b. modello meccanico:
- a<</ - lineare elastico
- omogeneo
- b<<l - isotropo

“<<” sta per “molto piu piccola di".

La trave & pensabile come formata da un insieme di fibre (ad esempio un pacco di spaghetti).

| campi diversi da zero sono: =

c0.#0; 1..#0; t., #0.

-> il tutto avviene in campo lineare elastico, quindi & possibile utilizzare la sovrapposizione
degli effetti.




TRAVE DI DE SAINT-VENAE

_Casi descritti in trave di De Saint Venant.

N, =Josz M = (SZ*%dA
ty
A A
z
T’// :J;ZU dA M% = lo. ' dA
A A
Ta; :JCZ'}Q dA M :J(_TZ‘L/‘*% —I— sz/*%/ ) dA
: A

-> parametri di sollecitazione per la sezione di normale z.
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D-2 E necessario, in una trave, conoscere il baricentro della sezione, ovvero il punto dove si

collocano le informazioni studiate, in forma schematica, nel calcolo strutturale.
CENNI DI GEOMETRIA DELLE AREE

_Individuazione del baricentro di una figura.

-> ogni sezione in cui si individua un asse
di simmetria possiede il baricentro lungo
tale asse.

><

><

Esempio: trave con sezione a T. :
a

a. scomporre la figura in parti, delle
quali & possibile conoscere senza Al
problemi il baricentro = scomposi-
zione in rettangoli. «— A2

b. disegnare dei vettori rappresentanti
ogni area, individuata nei baricentri
delle medesime.




CENNI DI GEOMETRIA DELLE ARE

La seconda coordinata del baricentro globale ¢ la risultante dei due vettori, dove il momento &
zero. = la risultante € all'interno dei due vettori, purché essi siano di verso concorde.

c. calcolare il momento dei due vettori rispetto ad un asse scelto opportunamente.

302*(5a/2 — /) + 202 (ov — %/) =0

N.b.la Yy che compare nell'equazione serve ad

P

207

applicare un’incognita alla stessa.

=0

2 15a3/2— 3@2% + 202 — 2LL25U/

1902

2 area totale della sezione.

Scrivendo sotto forma di formula il tutto:

> 192%/2— 5@2%: 0-> y=

Sax

Yg (coordinata y baricentro) = T

Sy
X g (coordinata = baricentro) = A
In generale:
Sxi=Ai * Yi
S%/i =Ai * i
con:

Ai = area totale i-esima della sezione,
Si = momento statico i-esimo della sezione.

Il momento statico € il rapporto fra un‘area ed una lunghezza, & una grandezza espressa al
cubo. Puo essere nullo (nell'asse baricentrico) negativo, positivo.

d. redigere una tabella con aree, lunghezze e momenti statici.

Ai yi xi Sxi S%/i
Al 3a? S5a/2 3a/2 15032 | 9432
+
A2 202 a 3a/2 203 3a?
totali 5o 19¢3/2  15a7/2
Sz 1922 1 — 190/10 = 1.9
Y A 2 53 “ o ¥ 3al2
%:
St 15a2 1 Ef
Xo= —L = =2 =34/ :
A 2 57 'Y
000 f ] N I
. . . . : Xa
Ovviamente, prendendo in considerazione 5
un altro asse «’, il risultato non cambia > 9,
il valore rispetto al nuovo asse e diverso,
ma la posizione di X rimane invariata. :
a a a

Ai yi Sx’i
Al 3a? al2 3032
+
A2 202 —a —2a7
totali S5a? —a?2
S - /10=0,1
= = =4/10=01la
Yo~ A 2 50

0,1c. + 1,9, = 2 (distanza fra i due assi « ed =’ c.v.d.)
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_Esercizio n.27 _ll momento di inerzia.
La tab_A si riferisce alla consue- Il momento statico delle travi A e B ¢
ta soluzione per scomposizione uguale, ma le medesime si inflettono in
(a destra), mentre la tab_B ana- modo diverso, offrendo una diversa resi-
lizza una soluzione alternativa stenza alla flessione = & possibile studiare
per sottrazione di aree (in basso) questa caratteristica con il momento di
tenendo conto dell'asse +’. . inerzia, ovvero la capacita della trave di
Pooo opporsi alla rotazione.
P 3a? x
@ A3 S in queste pagine verra affrontato solamente
A5=25.2[ — 5 - i momento di inerzia assiale. b
A6 =207 “ A4 i g -
AT = 402 Iz (momento di inerzia assiale rispetto allasse ) = | Y Ai * %2
L | i=1 -
a a a a a h g
. n G
o’ I% (momento diinerzia assiale rispetto all'asse 1) = | % Ai* ai?
i=1
tab A A 7 Sai tab B A 7 Sa’s N.b. Il momento di inerzia & il rapporto fra un’area ed una distanza al quadrato
Al| 3a? | 522 | 15432 AS| 2502 | 5a/2 | 125032 > € una quantita sempre positiva.
* B Per assi baricentrici di sezioni rettangolari i momenti di inerzia sono pari a:
A2 | 2a* a 203 A6 | 2¥2a? 3a 122 -
b3 b3
4 _ | B Iuc=
12 ¢ 12
A3 302 —a/2 —3a3/2 A7 | 2%4a2 3a 2403
+ + Per assi tangenti alle sezioni rettangolari i momenti di inerzia sono pari a:
Ad| 5a? —3a/2 | =15a3/2 totali 1302 53032 043 130,
Lei= | — L= | —
totali  13a? a2
S 3 1 : I di H Y
Vo= T _ @ = 0/26 = 0,040 A. sezione con /- di gran lunga minore di /.
A 2 13a?
Sx>  53a2 1 B. sezione con {- di gran lunga maggiore di /. -
Vo= — = — — =530/26=2,04c 3o 12 4
A 2 133
2,040+ (-0,040.) = 20 (distanza fra i due assi = ed =" c.v.d.) - la sezione A & molto piti resistente alla flessione della sezione B.




_Teorema del trasporto.

Siano date tre aree Al, A2, A3
espresse in forma di vettori, ed il
loro asse baricentrico Xg.

CENNI DI GEOMETRIA DELLE ARE

_Modalita applicative del teorema del trasporto.

Riprendendo I'esempio precedente (sezione a T):

G = i ¥ 2
! EA : §3

Si applichi un piccolo incremento d alle distanze % in modo da calcolare il momento di inerzia
rispetto ad un asse qualsiasi € non all'asse baricentrico delle aree.

Ixi= zn’,Ai*(%ier)z

S lai= ZAi*%iz + Y Ai*d* +
i=1

i=1 i=

n
269
i=1

*(d)

—
| B momento distanza rispetto ad un asse
statico baricentrico = 0
= _/
N
il rapporto fra i due € zero.
Dlui=|1uec + TA*R
i=1

-> Il momento di inerzia assiale rispetto ad un asse qualsiasi & pari al momento di inerzia
assiale baricentrico pit I'area della figura.

-> il momento di inerzia assiale baricentrico e il momento pit piccolo fra i possibili momenti di
inerzia di una figura.

La formula enunciata poc’anzi prende il nome di teorema del trasporto, il quale permette di
trovare il momento di inerzia di una figura rispetto ad un asse baricentrico ed un asse
qualsiasi.

Ai Yy xi Sxi S%/i
Al 3a? S5a/2 3a/2 15¢22 | 9a2/2
+
A2 202 a 3a/2 203 32
totali S5a? 19022 1503/2
S DB g 10=19
Yom 4 2 5a h o
S 152
Xo= —L ¢ L:gw/z
A 2 Saf
o
- o
1,9
o

>< >< >




Primo metodo: asse tangente

Non & possibile calcolare I né rispetto ad Xg né ad =, poiché non sono assi tangenti alle

due aree. > si pone un nuovo asse =, tangente ad entrambi i due rettangoli di scomposi-

zione.
Al FoR
X6 i
A2
a

I = Iz (Al + 12(A2)

3a*a?  a*Ra)® 3aA8at  1lat

3 3 3

Ix = = 3,674

E quindi, applicando il teorema del trasporto:

Iee = Iz — A* (2= Xgp > lae = 3,67a4 - 502%(0,10)2 =( 3,6204 |

distanza
fra gli assi

\EORIE DI DE SAINT-VENANT
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Secondo metodo: assi barcentrici delle singole aree

Se non & possibile trovare assi tangenti a tutte le aree, applicare il teorema del trasporto per gli
assi baricentrici noti delle aree di scomposizione.

1 Xg A2
0,60 -
0,90

~

X6

Xg Al

N.b. per le due aree, in questo caso, l'asse Xg € un asse qualsiasi = vanno sommati i
momenti di inerzia di ogni area € le aree per le rispettive distanze dall'asse al quadrato.

> Ie (Izc) = Iza + Z“:Ai * g?
Ixzc = Izci(Al) + Al¥( xgl — Xg) + Lza2(A2) + A2%( xg2 — Xg)?

3ok a*(2a)?

+ /2* 2 4+
2 3a.%*%(0,6c0) 2

> Ixc = + 202*%(0,90.)?

> Iwe = 02504 + 1,0804 + 0,67a4 + 1,62a4 =(3,6204 ] cv.d,



Terzo metodo: pieno meno vuoto

Analogo al primo metodo, con la differenza di considerare la figura inscritta in un rettangolo, e

calcolare l'inerzia del pieno meno l'inerzia dei vuoti tangenti.

L Ap

X6

Lo = I(Ap) - L(Av]) — L(AV2)

_ 3a*(Ba)? 5 @*(2@)3_ 8la4 — 1604
3 3

| B

= 21,674
Applicando il consueto teorema del trasporto:

Izc = Iz — A * (= —Xg)

> 21,6704 — 5a2%(1,90.)? = 21,6704 — 18,0504 =[ 3,620.4 |

c.v.d.

CENNI DI GEOMETRIA DELLE ARE

_Esercizio n.28

Sxi

Ai i
Al | 302 3a/2
+
A2 a?
+

92 | Al

al2

OL/3/2 ov

A3 | 3a? —a/2 | -3a?/2 -

+
A4

—3a/2 | —=15a3/2

totali  12a? —4a?

1
Vo= T: — 453 oo =—a/3=-0,33a
o

L'asse  stabilito & utile anche nel
calcolo del momento di inerzia, dal
momento che pud essere conside-
rato tangente a tutte le aree >

Avl =a?

Il momento di inerzia delle aree

piccole si ottiene per differenza fra il
momento delle aree Ap3 e quello
delle Av1; é possibile moltiplicare
per quattro il momento trovato, in
quanto le piccole aree sono tutte

equidistanti dall'asse .

Ap3 =207

L.— 3a*(2a)? + 4 @*(2@)3_ ot N a*(2a)?
3 3 3 3
60c
S I = Sl 2004

2404 To# 8aA
+ 4 =
3 3 3

> Iuc = I — Ai¥ (2" —Xg)?2 > Tac = 2004 — 1202%(0,3300)2 = (18,6904




D.3
SFORZO NORMALE E FLESSIONE
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_Sforzo normale in trave di De Saint-Venant.

Ipotizzando che la trave sia soggetta solo ad uno sforzo normale di trazione:

Zr © la zona di estinzione > lo sforzo
concentrato si distribuisce per la sezione.
E possibile rappresentare tale fenomeno
mediante un integrale.

N = | o, *0A
A

o, € costante, e quindi viene tratta fuori
dal segno di integrale.

N = o. |0A

A

L'integrale in A delle porzioni infinitesime
OA & uguale alla area stessa.

>A=X0A

Quindi, la tensione G & uguale allo sforzo
normale V fratto I'area A.

N = o0,*A
N
c,= ——
A

Zg

S I e




Se il materiale & isotropo la trave si deforma secondo €, €, €, (vedi p.88).

SFORZO NORMALE E FLESSIO@

6. Vo, Vo, N  Z— N
g, = - - — | |
|
e.= l/E(c.-v*(c.+0) ¢
&

Dato che non si verificano tensioni trasversali 6. e ,, €. € pari a:

Quindi la deformazione della trave é:
- direttamente proporzionale allo sforzo NV,

- inversamente proporzionale al modulo elastico E ed allarea A della sezione.

EA ¢ la rigidezza assiale.

E ora possibile occuparsi dellarea della sezione, che si contrarra secondo le deformazioni
trasversali € e €,.

e =1E@, -v* ((5%, +0.)
€, = 1/E (C,-v* (0. +o0.) <
Vo, vN
£ =- — =—
E EA
Vo, viN
€, =- = —
‘ E EA

-> compare il segno meno, poiché la deformazione & opposta alla precedente = & generata
dalla compressione anziché dalla trazione.

E quindi possibile rappresentare il comportamento della sezione mediante un unico cerchio di
Mohr - o, & costantemente distribuita in tutta la sezione; in questo caso il punto m coincide
con a, poiché non si verificano tensioni tangenziali.

0,20, 6,=0, 1,,=0

- il piano della sezione & un piano

principale, e la o di trazione coincide con

la 6, = caso monoassiale.
b ((5,0) C a=m (Gzarrz)
o R G/
T a




_Flessione in trave di De Saint-Venant (formula di Navier).

M,

Prendere una trave soggetta a due

momenti M., costantiin tutta la trave.

Il pedice .. indica intorno a quale asse

ruota il momento; in questo caso, I'asse «
é l'asse di sollecitazione.

Le fibre della sezione saranno tese al

lembo inferiore e compresse al superiore.

M%: GZ*%dA

- o, digrada da un valore massimo fino
a coincidere con l'asse neutro, dove non
si verifica tensione o,.

MLZ K%/*%dAZ K %2dA=K*I(X)

A A

-> flessione semplice retta (formula di Navier).

N
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-> La tensione ¢ direttamente proporzionale al momento flettente, inversamente proporzionale
al momento di inerzia e dipende da che punto ., della sezione viene analizzato.

-> si andra a verificare la tensione della sezione ai lembi superiore ed inferiore, dove & massi-
ma.

[I momento flettente, in ogni caso, pud
agire secondo un asse che non € un asse
principale di inerzia (- 0 ).

- E possibile trattare il momento come
un vettore (rappresentato dalla doppia
freccia) e scomporlo in due componenti
secondo gli assi principali.

M., M,
O.= * y — —Z2* o | > flessione deviata.
Ix I,

—> & stato posto il segno meno al secondo membro poiché la componente di M secondo . &
discorde rispetto al verso dell'asse.



-esempio pratico-

Prendere una trave incastrata a sezione
rettangolare.

Non si verifica né taglio 7" né sforzo nor-
male N > M positivo e costante in tutte
le sezioni della trave.

Per assi baricentrici di sezioni rettangolari
i momenti di inerzia sono pari a:

0h?
12

| ¥R

Trovandosi sull'asse neutro non si verifica
tensione. 2> y= 0

Sostituendo ~/2 ad 7
M2k M
T s 2 442
M 12 h M,
c.= e |6
0h2 2 lh2

SFORZO NORMALE E FLESSIO@

Y

o’ (MMM a2

hi2

h2

- o, trazione.

-> o, compressione.

E ora possibile applicare il cerchio di
Mohr, secondo il modello trave di De
Saint-Venant.

0.=0,=T,= 0
o, 70

T:LZ =

TU,Z =

- il valore o, coincide con il valore
massimo di trazione, mentre —c, con il
massimo di compressione. Scegliendo i
punti b o d, non si ottengono valori utili
alla verifica; scegliendo il punto e, il
cerchio di Mohr degenera in un punto.
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_Calcolo delle tensioni massime in una sezione. Si ha sovrapposizione degli effetti fra un campo costante prodotto da N ed uno a “farfalla”
prodotto da M.
Prendere un pilastro incastrato, con applicato uno sforzo normale N eccentrico. N.b. nella somma, I'asse baricentrico Xg non coincide pill con 'asse neutro (AN).

Quindi, in caso di sforzo normale NV eccentrico, & possibile enunciare:

Nn
z
N M,
v 0.= — + i )
- N A 17
Pressoflessione . “ N
-> compressione eccentrica. z -
- 7
y Equazione che, se posta uguale a zero, restituisce la posizione dell'asse neutro.
Tensoflessione N, l n M%/ -0
-> trazione eccentrica. I 7
z A Iy
g
Semplificando e riducendo il tutto:
_ M, = N*e
- elaborando un sistema p2,. =1./A - raggio di inerzia secondo I'asse .
equivalente, si giunge alle
seguenti conclusioni:
N e 0 N 1 © 0
————_ | —_— + = 9 B + =
v A P AT A P2 7
N ma, sapendo che N/A = 0 non € una condizione possibile, & sufficiente porre uguale a zero il
.= —y i resto dell'equazione.
A

M%/ N e
6. = @ - 7 1+ —— 4 =0 |- equazione dellasse neutro.

I, — V. P e

M.,
O, =

L.
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-> Per ottenere il risultato voluto, sostituire ai
termini N, A, p, e i valori in analisi senza
cambi di segno; variare solamente il segno
della Y secondo la convenzione indicata.

SFORZO NORMALE E FLESSIO@

*e

“\ 24

v

centro di pressione (cp)

-esempio pratico-

N

IScm

>

z //JQ
N*e

<

N =10 tonnellate
A =20*10cm = 200cm’
I, = 04312 =10%(20)*/12 = 6666,67cm*

pzﬂ, =1,/A =3333cm’> > p.=5,7Tcm
2 = asse neutro e tensione o, al lembo superiore ed inferiore.

N Ne

=—+
O A pL AT

> (=10t / 200cm?) + (10t *—SCm)*%/33,33cm2 * 200cm?) = 0

> —10t/200cm’® * (1 — (Scm*,/33,33cm?) = 0
> 1 - (5cm*,/33,33em’) =0

> 1-(5%4/33,33cm) =0

> 5%/33,33cm =1

> y= 33,33cm/5 2> y= 6,67cm

N.b. I'asse neutro, rispetto allasse bari-

centrico, & sempre antipolare al centro di

x€X
pressione. 6,67cm

$ I Scm
20cm
b
7
10cm
&
,,,,,,,,,,,,,,,,,,,, Xq.
AN




- Metodo grafico per individuare la posi-
zZione dell'asse neutro:

Congiungere e con p,, costruendo un

triangolo rettangolo. Il punto di interse-
zione con l'asse Y appartiene all' asse

°o) N B
neutro. /
200 . ______ I VA B AN

%AN (asse neutro)— P /e

Y P =Pt 7

- tale metodo permette di controllare
subito se l'asse neutro cade o meno
allinterno della sezione.

E ora possibile calcolare le tensioni . al lembo superiore ed inferiore. E’ sufficiente verificare
la sezione in +y, € cioe in £//2, e cioé in +10cm.

N.b. le distanze 4/ S0no prese dall'asse baricentrico al lembo superiore ed inferiore.

6. (a) = —10t/200cm’ * (1 — (10cm * 5cm/33,33cm’))
= 0,025 t/cm’ - trazione massima.

S (b) = —10t/200cm” * (1 — (~10cm * 5cm/33,33cm’))
=-0,125 t/em®> > compressione massima.

0,125 t/em?

Y 0,025 t/em®

\EORIE DI DE SAINT-VENANT
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Considerazioni:

- E intuibile dal principio che il valore di compressione sia pili grande di quello di trazione,
innanzitutto per sovrapposizione degli effetti ed in secondo luogo per la posizione
dell'asse neutro.

- Piu il centro di pressione cp si allontana dall'asse baricentrico, pil 'asse neutro si
avvicina all'asse baricentrico.

- Se il ¢p coincide con l'asse baricentrico, 'AN va all'infinito = si ha solo trazione
compressione semplice.

- Sel'asse neutro cade al di fuori della sezione, si avra una situazione di questo genere:




D.4
TORSIONE

TORSIONE |

_Momento torcente in trave di De Saint-Venant.

In un graticcio di travi, cio che e flettente per una trave & torcente per la trave perpendicolare.

La trave a sezione circolare, come quella in analisi, possiede il vantaggio della simmetria
radiale - la sezione non esce mai dal piano di appartenenza, anche sotto I'azione di un
momento torcente; una sezione rettangolare si ingobbirebbe, uscendo dal proprio piano.

N
7—5)1\4

configurazione di partenza

variazione
massima

variazione
media

nessuna |..

variazione

o~

configurazione variata

M, = momento torcente, agente intorno all’asse z.

M = momento reagente.

0(z) = Oz

dove:
- 8 = angolo di torsione;
- ©® = angolo unitario di torsione;
-z = asse della trave;

- [ = lunghezza della trave.




-> L'angolo 6 di torsione & funzione lineare della distanza z, ed & uguale a ® (costante che
restituisce I'idea di come ruota un oggetto sotto I'effetto di un momento torcente) per la distan-

Zaz.

Pensando la trave come una pila di
monetine, ogni moneta ruota in modo
diverso e ftrasmette una tensione alla
successiva.

I centro resta fisso. La tensione cresce
fino ad essere massima alla circonferen-
za. N.b. per le circonferenze, tutte le
concentriche sono assi principali.

M, = | 1*r OA
A

- integrale esteso all'area. <

Scomporre una tensione T tangente alla
circonferenza secondo = ed u, ottenendo

T..eT.,

| bracci di 1., € T, sono generici, ma il
verso delle due tensioni indica quale
segno € necessario applicare > T,, €

discorde con la direzione ~ e quindi
negativo, T., & concorde con . e quindi
positivo.

M, :J( T, o= To ) OA | > momento torcente.
A
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Approccio agli spostamenti di Neumann:

assegnare un campo di spostamento in ©>u

relazione a 8, vedendo come si maodifica il u

tutto.

Ogni s € un vettore, appartenente al piano
della sezione. Prendere un s qualsiasi e
scomporlo secondo i vettori unitari u e v.
L'asse z € l'asse neutro per la rotazione
-> sapendo che le sezioni di una trave

cilindrica non escono dal loro piano, non
si hanno componenti z > w.

U (discorde con ) — —e(Z)*% = —®Z%

V (concorde con ,,) — G(Z)*OO =Qzx

E ora possibile andare a verificare le deformazioni del sistema.

Dilatazioni lineari specifiche:

ou 0(—0Oz
€, = = (J): 0 -> la derivata di = rispetto ad ., & pari a zero.
0r Ox :

ov 0(Ozx)

Oy Oy

ow

& = =0 - non si verificano azioni in z.

oz

g, = = =0 -> laderivatadi ., rispetto ad - & pari a zero.



Variazioni angolari:

ov . ou _ %Ozx) a0z
o oy o o

=0z -0z=0

V.=

= sono le derivate di « rispetto ad - e di ., rispetto ad ., = 1, che quindi moltiplicate per una
costante (@z) restituiscono la costante stessa.

ow du 20)  A(-0zy)
vaZ = + = + = —("D%
Ox Oz Ox oz
ow ov 0(0) 0(Ozx)
Y, = + = + =0z
! Oy oz Oy 1559

La relazione sostitutiva per un corpo lineare isotropo enuncia che, per un corpo lineare
isotropo, le deformazioni trasversali sono legate alle tensioni longitudinali mediante il
coefficiente G (vedi p.88).

7,=-Gy.,=0

T;uz = G ’Y;LZ = _G®%
Tz'z;,/ = G ’YZ% = G@OO
E quindi:

M, ZJ( T, 0T y) O0A = ﬁG@o&)m - (—G@)%) Y OA
A

A
Trasportando le costanti al di fuori del segno di integrale:

>| M, = G@J(%ZWZ) OA

A

TORSIONE |

” . .2 2. . .. , , \ \
- L'integrale in A di 2~ + ye il momento di inerzia polare Xp per travi a sezione circolare.

4
nR L N
I,= —— - formula del momento di inerzia polare, assimilabile a quella del
2 momento di inerzia lineare.

Sostituendo con la nuova simbologia:

>0 = _I -> pit forte & il momento, piti grande & I'angolo di torsione.
P

-> Gl ¢ la rigidezza torsionale. G in questo caso & il modulo di elasticita torsionale.

oG M, M,
Gl I,
Tz//,/:G %%: %oo
'/ Glp I,

2 2 M, M,
Tmax = \JT/,LZ max ¥ Tz, max = — 9624‘%2 = —R

Ip Ip

aggio




_Momento torcente di sezioni cave (formula di Bredt).

Caso A.
Prendere una sezione cava chiusa, una
sorta di tubo.

Secondo l'ipotesi di Greenbhill le tensioni
tangenziali “viaggiano” nella sezione
come il flusso di un fludo > pil
limboccatura & stretta piu il flusso &
veloce, poiché si ha sempre la medesima
quantita di fluido che la attraversa.

9b1T1=b2T2

Le tensioni tangenziali si “inseguono”,
possono essere sempre costanti nelo
spessore, secondo le concentriche della
sezione; si comportano, appunto, come
un fluido.

Tagliando la sezione in un punto qualsia-
si, si ha un diagramma tensionale del tipo
illustrato a fianco, tenendo sempre conto
del fatto che lo spessore ¢ abbastanza
piccolo da considerare costanti le tensioni.

\EORIE DI DE SAINT-VENANT
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Caso B.
Prendere una sezione cava aperta in un
tratto.

-> anche in questo caso le tensioni si
inseguono, formando un diagramma delle
tensioni a farfalla.




Analizzando il caso A:

prendendo il medesimo oggetto cavo con
baricentro G, isolarne una porzione dc.

T é la risultante delle tensioni tangenziali
appartenenti alla porzione.

-> ogni porzione va ad equilibrare il M,
complessivo.

-> ogni porzione, quindi produce un
piccolo momento torcente, la sommatoria
dei quali ¢ il M, totale.

r; ed r, sono i bracci delle risultanti T; e

Ty, perpendicolari alle risultanti, rispetto al
baricentro G.

I momento di ciascuna risultante sara:
T1h de *

Tolp de * 1y

> Tilq e Tply sono uguali, per la
sunnominata legge del flusso.

> Tlmedio * 2 rdc

dc/

TORSIONE |

N.b. in questo caso, r identifica la con-
giungente fra i lembi inferiore e superio-
re di dc ed il baricentro G.

Portando questa funzione al limite:

= Thedio | ¥ do = M, totale.

L'integrale di x*dc & il doppio dell'area
di tutti i triangoli, fatti dalle congiungent,
che costituiscono I'area della sezione.
-> area media.

AM = r*dc =2Q

AM = nr? = 1(x+4/2)*

quindi:

M,

Ts =
20 = U'medio

- legge di Bredt.
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D n 5 _Taglio in trave di De Saint-Venant.
AZIONI TAGLIANTI .
z
b >
> \L%
4
M,

Quando il taglio (7)) € eccentrico rispetto

Y

agli assi uscenti dal baricentro della
sezione, diventa parte del momento

torcente (M,). 2
4
M, T
@ . "
——
T,
y
‘ y Si tratta del caso in cui il taglio
\ agisce sugli assi principali di inerzia.
‘_
T M da equilibrio al sistema.
M ¥ Z L .
C ' — N.b. Il taglio &€ sempre associato al
T, momento flettente.
B y
- > Mu == 7;/ (Kfz)
o M. T, (-2
O, = y =— - 1/
I o '
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_Trattazione di Jourasky.

Ingrandendo un concio della suddetta trave:

G

NN DN N N NN

ab = corda qualsiasi che divide la
sezione in due aree, A ed Ay

00,
b

o, + * dz

—-> sommare alla tensione G, che esiste
senza il concio dz la risultante delle ten-

sioni 00, dell'area sottesa alla corda.
E quindi possibile costruire un integrale.

b

00,
- |0,dA + | |0, + dz |dA +| T,.dxdz =0

oo
An An 0
b

00,
dz |dA + | T,.,dxdz =0
Ox 7

[)@ + Q<+

An 0

AZIONI TAGLIAIM

Sostituendo e semplificando G, nella prima parte dell'integrale:

M, T, (=)
GZ: *% = _ 7 *%
I ° Iz
5 0 { T, (=) } 0 { T, 0 T, z } T,
— |- u |= —*—'/1,"!‘ . = 0y
o e ) ool I’ 1e’) Iz’
b
I‘( %Ei{dA +| T, dx;{:o
- p
Ay 0

Trarre dal segno di integrale le costanti (N.b. l'integrale di T,.in d-da O ab & paria T, per
la lunghezza dell'intera corda ab = /)

T,

Yy

— Y *dA =—T, b

I~ ’
An

& il momento statico S,L dell’'area Ay.

T

¢

I{X} S%(AH) = - T%/Z FA/

9 Tf}/z: _T% S%(AH)
‘ I/
Quindi:
T,S.,
T, =t,dA > T, = —L@ > formula di Jourasky.
‘ : ’ |

A




-esempio pratico-

b or
B , )
h ﬁ _____ Z/_i___
/ A B
- 7
# oc c /
op=p/* 12« B _ 6P Pl ® |7
bR 2 bh?
_ 12 h _ ¢p/ M
Oc=Pr* 2= x_ — —_ObF )
‘ bhH’ 2 bh? P(,I Q

Alle estremita le T saranno pari a zero - le T dipendono dal momento statico S _, che & il

momento di una sezione compresa fra due corde. = si andra a calcolare il momento statico

nell'asse baricentrico per meta sezione.

li=b

bh . h  bH
Swz * —— _

2 4 8

T 12 2 3T
Sl - St
Y b pH 8 2bh

6P!/bh?

<«

-

Ao :

3T,

PR

2A

6P!/bh’ 37, /2bh
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Verifica nel punto 1.
-> siha solo G¢.

Verifica nel punto 2.
-> per effetto delle T si verifica

anche una o principale di tra-
zione.

Verifica nel punto 3.

-> si hanno due & principali di
trazione e compressione, che
si elidono perché uguali in
modulo.

Considerazioni:

se O & afarfalla, T, & parabolico.
d

-> il diagramma delle T & formato sezioni paraboliche variabili.




D.6
PRATICA

PRATICA

_Metodo di verifica delle tensioni ammissibili.

Il metodo delle tensioni ammissibili pone come base per I'analisi le azioni caratteristiche, azioni
che, nell'arco di un periodo di vita stabilito della struttura, hanno la probabilita del 95% di

essere superate.

Analizzando I'azione della neve negli anni:
- non & possibile prendere il valore
medio, ovviamente troppo basso; si andra
a trovare un valore che viene superato, ad
esempio, solo nel 5% dei casi, in modo da
costituire un livello ragionevole, non
troppo alto. = valori poco probabili ma
possibili.

Ad esempio, si prenda un tondino di
acciaio con applicato uno sforzo normale
di trazione M.

-> il materiale si deforma. Il grafico ha un
andamento lineare fino ad un andamento
F.k, poi si snerva, incrudisce e collassa.

Al
€= —/
Yo
N
o= "
A

98 99 00 01

98 99 00 01

02 03 04 05 06
valore di
verifica

02 03 04 05 06

N +—

Fik

Gfe,adm

La nomenclatura delle barre “FeB44K” & uguale al limite F,k = 44 kg/mm® = 440 MPa o
N/mm?® = 4400 kg/cm”. Fe sta per ferro, B per barre.

A tutto questo si pone un valore limite inferiore a F. k.

> chrro, ammissibile — 2600 kg/sz.
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E chiaro che ci si riferisce solo allo stato elastico del materiale. La flessione semplice, come noto, avviene dove non si ha taglio (t # 0) e si verifica momento
massimo (o # 0).

E = 0% agm/€ = 2,1 * 10° kg/em’.

La verifica viene condotta per raffronto fra la o, ottenuta e la o agm-

- Op < Ofe,adm

_Metodo di verifica degli stati limite.

M, M,
Vengono applicati alle azioni caratteristiche dei coefficienti amplificativi. o e Tk
max %max
(it W I
Carichi permanenti: 1 B M
1.4 criterio di resistenza; —— < Gadm
A%
S . 1,5 -> carichi principali
Carichi accidentali: 1,05 = carichi secondari
0 Raggiungendo il valore F. k la 6 non pu pit aumentare, e quindi il grafico cambia:

Per I'acciaio, .k & di 3818 kg/cm’.

= =

10%,, (dieci per mille) & il valore oltre il AN |
quale non & dato andare per I'acciaio nel A g ) g ) g

sistema degli stati limite. > si tiene conto o Omax Omax gllnﬁxmite di rottura)
anche del materiale nello stato incrudente '
e plastico. ; ;
Fk | | -> nel metodo degli stati limite si tiene conto della riserva di resistenza del materiale in campo
2,8°/,, € un valore stabilito, poiché E, che L1577 plastico. N.b. in ogni caso, la deformazione resta.
dipende dal materiale, & ovviamente il ’ | |
medesimo in tutti i paesi.
DR ;&
2,8%00 10%,
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_Casi di stati pluriassiali (ipotesi di Von Mises).

Se nelle tensioni ammissibili si limita la o, con una o .4m, in caso pluriassiale si procede in
modo analogo.

6c<0,<O07 -> 6c<06;<0T , Oc<o <Ot

Per materiali isotropi si ha un campo di
dominio quadrato, che determina le
tensioni ammissibili per il materiale.
Cercando un modello che descrivesse
meglio la realta, il Tresca formuld un
grafico sostitutivo (vedi p.90-91).

O]

PRATICA

Analogamente al criterio di Tresca &
possibile usare lellisse di Von Mises,
derivante da dati puramente sperimentali.

2 2
\j O + 01" — (01 * Ofe ) = Oadm

-> ipotesi di Von Mises.

on

o1
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-esempio pratico-

7
. . o1=0./2+R=0/2+\/(0./2)* + (t..)’
In caso di torsione pura con trave di Saint-Venant.

0:#0; T..#0; T, #0. » o1 =062 -R=0/2-\[(c.2 + (v}
t

Oy

6,/2 o, Y

Quindi:

on="1T

2. 2
° \j G 01 —(O1* Ofc) = Oadm

w { 6.2\ (627 + (x..) F {cz/z N2+ @y F (G1* Ok ) < Gutm

2 2 2
\| T°+1°+1° = V3*T < Cuqm

> Tadm = Oadm/V3 |::>

. 2 2
ot semplificando > | \| 0,” + 3T.." < Oadm

= il termine in radice e la sigma ideale Giq, che € la grandezza indice del pericolo da
confrontare con la sigma ammissibile G4, per verificare una struttura.

Per la reciprocita delle tensioni tangen-
ziali, le due <., e T, sono uguali, e ¢, &

(t.2) m (t;.)
zero secondo il modello di De Saint ’ AN
Venant. 7 \

. R > — R |\
-> quando una delle due o & zero le due oy — \ oy
T sono sempre uguali. z b©) C(o/2) a(o p
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PRATICA

_Verifiche e dimensionamenti. -esempio pratico-
Per procedere con i dimensionamenti, &€ necessario conoscere le formule inverse dei teoremi Prendere un telaio strutturale, analizzando
di Navier, Jouraski, Bredt. In questo caso viene in aiuto l'ipotesi di Von Mises. una delle travi.
TR T
Oid = \ 62 + 31?2
V4
Prendere sempre come modello la trave o ) 7
di De Saint-Venant / Sezione in A (mezzeria).
. y q]
. . @
0:#0; T, #0; T, #0. —=y - litaglio 7' nullo. B "
i _
- Non si hanno sforzi normali NV.
N
- Non si ha momento torcente M. §
N ?
c= — - Esiste un momento M " positivo r B A
A (N.b. il piano posto & z,, quindi Ia ‘
_ N rotazione avviene intorno a «).
Oid = —Oadm < A < Gadm qEZ/IZ
M g \/ I q?/24
T | A |
Ponendo che le travi in analisi siano in
Oiq = V31T acciaio, sezione HE:
e |
Mo O T o
Sa|_, h &)
M T Tz
€ xX
—Cadm = Oid = —— = Cadm ®
W [ ] [ I
e | | v
o)
b
7
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M -> la trattazione svolta nella sezione A non € piu valida, poiché interviene anche il taglio.
¥
M =lo.*,dA > 0.= *
7 z Ic 7
A T,S.
T, =1, dA > T, = —+ =
-> formula di Navier, che descrive la flessione semplice retta (vedi p. 104). ‘ I/
A
-> l'acciaio si comporta nello stesso modo a trazione ed a compressione, € la sezione ¢
simmetrica in «. Quindi: -> formula di Jourasky, dove:
M. - T, =taglioin y;
> Cuwx= ——*h/2 ¢
X

- S, = momento statico dell'area

M sottesa alla corda /;
> W < Ofe,adm
u - T = momento di inerzia di tutta la
S— < —Gfe.adm sezione;
W

- = corda qualsiasi, che assume

- se la sezione non fosse stata simmetrica, si procederebbe a due diverse verifiche al lembo diversi valori.

inferiore e superiore.

Il diagramma delle T ha grossomodo questa forma.

Sezione in B (sull'incastro).

- lltaglio & T, positivo.

- Esiste un momento M, negativo. ‘ I %
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Quindi, la sezione che verra verificata sara la sezione A, la piu sollecitata.

el | 1 |
2

Sa h

-> vengono scelti tre punti per la verifica: 1 al lembo superiore, 2 subito sotto I'ala superiore €
3 in mezzeria.

Verifica nel punto 3.

Oid — + 3T
T,6S h
> 1= ——1—
I/
b=8a
e’ e 2 b
| BN == +(€b)>{ ej|
12 2
I Sa*(h-2e)’
XA2) T T

B b_e3 «Be 2j| Sa*(h-2e)’
I%t_z{ 12 }zﬁeb) [ 2 ] TR

h-e tSa h-2e, h-2e
2 4

S. = (eb)*

PRATICA
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Verifica nel punto 2.

Oid = \ (52 + 3’[2

T,S. h
> 1= Sa

Iz /- 3

Moo h-e )
2> 0= *

I 2 b

I, = idem come sopra.

&=Sa

h-e

S, =(eb)*

-> il momento statico diminuisce gradatamente.

Verifica nel punto 1.

Oid = \ (52 + 3’[2

T,S. h
> 1T= -> idem come sopra. 5a i

Iz /- =

Moo h
> 0= * —

 EY 2 b

T, = idem come sopra.

b=e

- secondo la teoria del flusso delle T, il momento statico gira = /- diviene e, e quindi &

sufficiente meta sezione per 'analisi delle T.
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_Qualita dell’equilibrio.

Condizione necessaria per I'equilibrio di un sistema, come noto, € che la sommatoria delle
forze agenti e reagenti e la sommatoria dei momenti siano pari a zero. Nell'instabilita
dell'equilibrio si analizzano alcuni casi in cui questa necessaria condizione non ¢ sufficiente.

Instabilita = carico di punta.

Il sistema deve essere in equilibrio nella sua qualita = non tutti gli equilibri hanno la

medesima qualita.

Esempio: bastone rigido incernierato.

caso A: la struttura & labile, ma caricata in
questo modo risulta in equilibrio.

YHi=0
2Vi=0 > V, -P=0 > V,=P
>Mi=0

caso B: anche il secondo esempio & in
equilibrio, ma la qualita dello stesso &
maggiore.

-> lasta sotto l'effetto di azioni orizzon-
tali (perturbazioni) pud muoversi, ma alla
fine ritorna nella configurazione standard.
-> equilibrio stabile.

Se l'oggetto, in caso di perturbazioni, si
allontana sempre piu dalla configurazione
di partenza I'equilibrio & detto instabile.

=

= N
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Anche in questo caso la struttura & labile,
ma regge.

Assegnando una perturbazione, I'oggetto
si sposta un po’ e poi si ferma >
equilibrio indifferente.

%

-> non tutti gli equilibri sono uguali. Per sapere di che equilibrio si tratta bisogna assegnare
una perturbazione. Ma comunque, a priori, & necesasrio verificare che l'oggetto sia in
equilibrio.

Ma bisogna tener conto che i materiali sono elastici, non rigidi.
- sistemirigidi > I'equilibrio & un fatto posizionale, non dipende dall'entita della forza;
- € necessario controllare che i vincoli siano ben disposti.
- sistemi elastici = controllare il punto critico. Dipende dal fatto che il sistema sia:
- ad elasticita diffusa (in ogni punto);
- ad elasticita concentrata nei vincoli.

_Molla rotazionale.

Il vincolo & formato da tre parti; una
cerniera, un incastro ed una molla.

Non & un vincolo perfetto, in cui i mondi
della cinematica e statica sono separati.
In questo caso cinematica e statica sono
collegate fra loro.

Cinematica statica
u = 0 H # 0
v = 0 V # 0
o = Mk M = k _

- la struttura pud ruotare fino ad un
valore stabilito in base alla rigidezza k
della molla.

M =
-> rigidezza rotazionale applicata alla
molla.

(127

Riprendere il sistema di partenza, ponen-
do una molla rotazionale.

YHi=0
2Vi=0 > Vo -P=0 > V,=P
>MA=0

Cinematica linearizzata.

Assegnare una perturbazione sufficiente-
mente piccola da confondere I'arco con la
tangente.

Il carico viene ridisegnato con lo stesso
modulo, direzione, verso.

2Hi=0
2Vi=0 2> V, ¢&sempre =P
EXMA=0 > M-P*§+k*¢=0

- P9 & il momento instabilizzante M,
- ko & il momento stabilizzante M

6="lp
M, > M; - equilibrio stabile

M < M; > equilibrio instabile

M, = M; > condizione critica, che si andra a calcolare.

Va




Riprendendo il calcolo del momento in A:

—Plp+kep=0
>¢o(Pl+k)=0
-> questa formula pud essere uguale a zero in due casi:

- se @ =0 - matematicamente questa soluzione viene chiamata banale, poiché se ¢ &

zero la struttura non ha subito perturbazioni.
- se(—Pl+k)=0 - formula da analizzare.

Pcr =k/ | 5 risolvendo questa uguaglianza si trova il carico critico per la struttura.

N.b. k// non & il punto dopo il quale la struttura collassa del tutto.

Cinematica finita (si considera I'effettiva deformazione)
XMA=0 > M-P*¥5+k*¢=0

9—P€sen(p+k(p=0

PCR(cp) = k(p/ @ sen(p

- per@=0

lim {_(P_:| —1
©>0 [sen(

- per@=m/2
> PCR(q)) = k/@ * (7'[/2)/1

- per@=m

{ cosp

> @/sen( = o0 > 1 e —7 sono gli asintoti del grafico che esprime le posizioni di equilibrio

fra My ed M.
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k/? > punto di biforcazione dell'equilibrio.

-> pil l'asta ruota, piu P non rientra nello
sforzo normale e va nel taglio.

-> il carico di punta e uno sforzo normale

-> per il calcolo & necessaria la sola com-
ponente normale.

_Molla estensionale.

Cinematica statica
u # 0 H = 0
v = V/k V = kv
o # 0 M = 0

v = Vi

- rigidezza estensionale della molla.

>Hi=0 > Hy,—-Hzg=0-> H,=H;p
>Vi=0 > V, —-P=0 > V,=P
>MA=0

Cinematica linearizzata.
Applicando una perturbazione: Hg = k*d, &= (¢

SMA=0 > M-P*3+Hg*/=0
> Ps =M
> Hyl = M,

>~ Plg + (Kig)*/ =0
> (-P+kh)*=0

PCR((p) = k@

P
K/!
fni 2 2 n ¢
W P
\A Hg
B
0
Hy A
Va




Cinematica finita.

XMA=0 > M—-P*5+ Hp*/cosp =0

> — Plsen@ + k*3 [ cosp = 0
> — Psen® + kU seng cos¢ = 0
> sen@ (— P + klcosp) =0

PCR(q)) =k/ cos(p

- Pergo=0
> PCR(¢)=k6*1 =k6

- Perp=n/2
> PCR(q)) =k/l*0=0

- Pero=m
- La struttura si rompe o si € gia rotta.
-> la struttura non accetta piu carico, ci
avvisa con grandi spostamenti che sta per
spaccarsi e poi si rompe del tutto.

Quando le aste della struttura possono
sbandare indifferentemente da entrambi i
lati € possibile parlare di aste perfette.

In caso di sistemi imperfetti si parla di
instabilita per divergenza > le aste
partono gia ruotate di un valore .

Pl (9o + ¢)>=ko

QUALITA’, VINCOLI ELASTM

{ cosp
P
k/
v -an 2 ¢
1P
o .

_Concio elastico.
E una sorta di cerniera interna.

La struttura pud piegarsi indifferentemente
da entrambi i lati, con la stessa forma di
deformazione.

Ponendo due conci elastici all'interno
della struttura, si avranno due possibili
modi di deformazione:

primo metodo di deformazione >

secondo metodo di deformazione =

Considerando la trave come costituita
interamente da conci elastici, si ottengono
le modalita di deformazione illustrate a
fianco.

7
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CARICHI CRITICI

Prendendo il consueto concio di trave.

Uz = linea elastica o abbassamento.

W2 = ¢z = rotazione.
V5 =0’ = 1/R = curvatura.

1/R = — M/EI > M, = R/EI

Si avra un momento stabilizzante M dato
dall'elasticita della trave.

-> M, =EI/R - l'opposto di M.
9 Ms = EI*(U”(Z)

M & la capacita di opporsi alla rotazione
relativa delle facce del concio, ed € legato
alla curvatura.

My = P*1}, = momento instabilizzante.

Quindi:

P*U, + EBI*1%,, = 0 > carico critico euleriano.

> P/EI* (Z}(Z) + (Z}”(Z) = O
ponendo a” = P/EI
-> 6127}(2) + <Z/Q”(Z) = O

Saltando la parte di calcolo attraversante la trigonometria, viene presentata direttamente la
formula gia semplificata.
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> Uz =Cisenaz+ C;cosaz n € il numero di onde o semionde che la trave pud produrre sottoposta a carico critico.
Per risolvere questa formula € necessario porre due diverse condizioni al bordo: . 22El 9 EI

2 2
a.per B0 =0 > C; sendt + Cs cosap > C10+ Co1 > C, =0 ¢ ¢

2 2

_ 2’m°El _ 4m’El

b. per Wz-p=0 > C; senal +M‘5 CR™ @2 B @2
esistono due soluzioni per cui il tutto sia uguale a zero: 5 5
- C,; = 0 (matematicamente banale) Peg = I'mEl _ _n’EI
- senal = 0 - & uguale a zero quando al = nTt 2 2

Per le verifiche viene usato il carico critico pil piccolo:

sena

2
PCR T El

a=nm/l 1 4

a* = n*i/l?

> P/EI = i*1/?

2. 2
PCR _n TEZEI -1

Quindi il carico critico dipende:
- dal modulo elastico
- dal momento di inerzia
- dalla lunghezza della trave
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E possibile individuare quattro modi di deformazione per strutture sottoposte a carico critico. In ogni caso, quanto detto finora si applica a travi snelle.

oo

_Significato di tozzo e snello.

Esempio: verifica di un pilastro.
N, = valore di rottura a compressione.
_ : N (P)
] 0 7 0 A = spostamento in generale.
- . - Nip weergrrey
Se tozzo, il pilastro viene verificato solo a !
compressione.
->P< N%
Z 7 Se snello, si verifica tutto, anche il carico >
critico di punta. A
modo | modo Il modo Il modo IV 251
bo=21 lo=" lo =3 lo=112 >p<-
\ N
La snellezza di una trave ¢ pari a:
lo P
A= con pzmin = Imin/A Ny - a ————————————————————
z Pmin ' \\\
A A - il p & minimo poiché il carico critico \
DR > preso in esame & il piu piccolo. \\ \
s / L'inerzia restituisce, come noto, 'idea del &\\\\
/ Vi ) )
( J modo in cui lo sforzo normale si distribui- §\\ &\\\\\\\\

; - S . ) , sce nella sezione. !
con fy = lunghezza di un'onda. | valori indicano quante volte, rispetto ad /, & grande un’onda Ay

intera. Per il calcolo, basta sostituire tali valori nella precedente formula:

P B 71:2EI p ~ RZEI p ~ 37[2EI ~ 2 I - PCR= = elementi tozzi elementi snelli
CR(1) = 4@2 CR(2) ~ 52 CR(3) = @2 CR#4) ~ @2

- porre un termine A che deriva dalla proiezione di a sull'asse A...
Quindi, il carico critico & pari a: 7 :

2
se A > }uf = verificare P < T EzA
) | A
Pcr= >
se A< X% = verificare solo a compressione, P < N%
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Nel punto a I'asta puo sia sbandare sia rompersi per compressione.

2
T EA EA
T 97%=TC E—

N, =
7 N%

In ogni caso, la snellezza & solo un fatto geometrico.

N.b. il grafico della pagina precedente &
formato dalla somma di: M

Ny -

rottura per schiacciamento

rottura per instabilita

intersezione dei due domini.

CARICHI CRITICI |

-esempio pratico- l P

E = 210000 [Mpa] B
Gyc =275 [Mpa]

A =250 - 240 = 4900 [mm’]

I = (250" - 240%)/12 = 4,904*10" [mm’]

p =I/A = 100,042 [mm] A

Ny =A*c,c > 4900%275 = 1347 [KN]

A="lo/l > 20/p > 2%3000/100,042 = 5,992 [n]

\| _EA
}\.ﬂu/ =T N—% = 1'5\]210000*4900/1347500 = 86,82 [n]

7

Smm [Z]







INIDIGLE




A _STATICA DELLA TRAVE

A.1_TEORIA DEI VETTORI .....ccccerrrrrerrrresrrenssssresssssessssssesssssessssnsssssnes pag. 6
VEHOMT IDETT ... pag. 6
Vettori @ppliCati ... pag. 8
Poligono fUniCOIAMe ..........ccooomrveveeeineeciseerce s pag. 9

A.2_VINCOLI ED EQUILIBRIO .......cocoemeremrrmremrressssssesssssessssssesssseseans
Gradi di liberta’ nel piano .
Alcuni tipi di VINCOIO ......covvuvvvciesciesriccssesissss s
Tipl di SEURUTE coooe e
Linee d'azione delle reazioni nei VINCOli ...........cccocvvrverriesrrrenriieninnn. pag. 12
Equilibrio di una Struttura ............cccccoveevieriineciiessessesseesesis pag. 12
ESEICIZI N1-9 oo pagg. 13-17

A.3_CARATTERISTICHE DI SOLLECITAZIONE ........ccccoeoumrenurrerennns pag. 18
Convenzione positiva in un concio di trave ...............ccooeevveeercerionnne. pag. 18
Analisi delle caratteristiche di sollecitazione
Rotazione del concio di convenzione positiva nelle strutture ......... pag. 20
ESErCIzi NA0-TT oo
Rapporti fra taglio, momento e linea delle pressioni
ESErCIzi NI2-13 oo
Momento, taglio e sforzo normale in termini differenziali
La cerniera interna ...
ESEICIZI NI4T oo

A.4_STRUTTURE RETICOLARI ......ccoveirrerecrreresrsessssnsessssessssesessnnes
Tipi di strutture reticolari ...................
Concetti preliminari per il calcolo .........
Metodo di calcolo dell'equilibrio ai nodi ... .
Metodo di calcolo delle sezioni di Ritter ...

INDICE

138

B_LA TRAVE ELASTICA

B.1_TRAVE INFLESSA ... ssessssssesssssesssssssssnns pag. 43
Defromazione 1ongitudinale .................ccoommmreereveininnrcreecenececrnns pag. 44
Defromazione @ taglio ...
Defromazione flessionale
Modello di Eulero-Bernouilli € TImoshenko ..........cc...coocvvevvvrerriinnnns pag. 45

B.2_SPOSTAMENTI, ROTAZIONI, CURVATURE .......cccccoerrrurrerennne pag. 46
Relazione fra momento flettente e deformata flessionale ............... pag. 46
Richiamo agliintegrali ...
Metodo dell'integrazione della linea elastica .
Metodo dellanalogia formale di MORF .........c.ccooccimmmnrerevceiisnniees
ESErCizi N.A8-21 oo
Abbassamenti e rotazioni notevoli ...

B.3_STRUTTURE IPERSTATICHE ..........ccceournrrreerrresrsesesseesnsens
Calcolo dell'incognita iperstatica - metodo delle forze ...
Appendici isostatiche ed oculatezza di risoluzione
Calcolo dell'incognita iperstatica - sconnessione interna ............. pag. 56
ESEICIZI N.22-26 .......oooverieeeieess s pagg. 62-73




C_MECCANICA DEI SOLIDI

C.1_ANALISI DELLA DEFORMAZIONE ........cccocvummrmenemrrensrsnsessnenens pag. 76
Dilatazione lineare SPeCifica ............cooocvvomecvviienceviiescesssseesesesins pag. 78
Variazione angolare 0 SCOrfiMeNnto PUFO ............ovrvvevnnrreeinneerinns pag. 79

C.2_TEORIA DELLA TENSIONE ........cccoeosmmmimmnenersnressssesesssessssssesans pag. 80
Teorema di CAUCHY ... pag. 81
Cerchio di Mohr
Stati tensionali NOtEVOIi ...........ccccvvveeervvieeeerieeeeeeee e pag. 85

C.3_MATERIALI ...t ss s ssessssssesssnsens pag. 86
Leggi costitutive dei materiali ... pag. 86
Rapporti fra tensioni € deformazioni ................ccooccvvoimerrviiencrriiiinecns pag. 87
Tensioni e deformazioni in materiali isotropi

Criteri di resistenza dei materiali ..............ccoooooervcoerrceneeccesriienecesnens
Modello di Galileo-RaNKINE ..............covvvvereeerrisereeesecseeseree e
Criterio di Coulomb
Criterio di TFESCA ..ouveeeeeeereeereeesreeesssessss s sessessssss s

INDICE

D_TEORIE DI DE SAINT-VENANT

D.1_TRAVE DI DE SAINT-VENANT .......cccccoirrnrrrrenemrresssnesessssnsesnnns pag. 94
Casi descritti in trave di De Saint-Venant ............c..ccooevvvvcinrcrrinnne. pag. 95
D.2_CENNI DI GEOMETRIA DELLE AREE ..........ccovnumrnenenrerennnens pag. 96
Individuazione del baricentro di una figura ............ccoooevevevveiirene pag. 96
ESEICIZIO N.2T ..o e
I momento di inerzia
Teorema del trasporto ........cc.vecvrveineiesisesss s pag. 99
Modalita applicative del teorema del trasporto ............cccocoveevviennens pag. 99
ESEICIZIO N.28 ..o pag. 101
D.3_SFORZO NORMALE E FLESSIONE ..........ccccourmenummrensrrenesrrenens pag. 102
Sforzo normale in trave di De Saint-Venant ............ccc..cooeerevinnnne. pag. 102
Flessione in trave di De Saint-Venant (formula di Navier) ......... pag. 104
Calcolo delle tensioni massime in una Sezione .............cccc....u.... pag. 106
D.4_TORSIONE ..o sss e sss e ssesssssssasans pag. 109
Momento torcente in trave di De Saint-Venant ................ccooocvvunnee. pag. 109
Momento torcente di sezioni cave (formula di Bredf) .................. pag. 112
D.5_AZIONI TAGLIANTI ..ot sess e sssesssnnns pag. 114

Taglio in trave di De Saint-Venant ... pag. 114
Trattazione di JOUrasky ..........ccccomrevmrrriineieinneeesseeeessesseenens pag. 115
D.6_PRATICA ... sens pag. 117
Metodo di verifica delle tensioni ammissibili ...............cccoccovi pag. 117

Metodo di verifica degli stati limite .................... ... pag. 118
Casi di stati pluriassiali (ipotesi di Von Mises) ... pag. 119
Verifiche e dimensionamenti .............cccc..cooevevviieecvviieeccvicissceiiiens pag. 121




E _INSTABILITA’ DELL’EQUILIBRIO

E.1_QUALITA’, VINCOLI ELASTICI .....ccccvvieirrnrnssrsssnssssnsssssssseens pag. 126
Qualita dell'equilibrio
Molla rotazionale ...
Molla €StENSIONAIE ..........oovveveeeeeeceeeee e
CONCIO EIASHCO .....vvoeovveeveereeeseeeeee s snseen

E.2_CARICHI CRITICI ....cccourrrrrrcsnsimimsnsnissssssssssssssssssssssssssssssssssssnnns .
Carico critico euleriano ..............
Significato di tozzo e snello

INDICE

138










	00_COPERTINA.pdf
	00_PREFAZIONE +colofon.pdf
	01_A_PAGINA STACCO.pdf
	01_STATICA TRAVE.pdf
	02_A_PAGINA STACCO.pdf
	02_TRAVE ELASTICA.pdf
	03_A_PAGINA STACCO.pdf
	03_MECCANICA SOLIDI.pdf
	04_A_PAGINA STACCO.pdf
	04_SAINT-VENANT.pdf
	05_A_PAGINA STACCO.pdf
	05_INSTABILITA'.pdf
	Z_INDICE.pdf
	Z_RETRO.pdf

