from __future__ import annotations import bisect from math import ceil from time import monotonic import rich.repr @rich.repr.auto(angular=True) class ETA: """Calculate speed and estimate time to arrival.""" def __init__( self, estimation_period: float = 60, extrapolate_period: float = 30 ) -> None: """Create an ETA. Args: estimation_period: Period in seconds, used to calculate speed. extrapolate_period: Maximum number of seconds used to estimate progress after last sample. """ self.estimation_period = estimation_period self.max_extrapolate = extrapolate_period self._samples: list[tuple[float, float]] = [(0.0, 0.0)] self._add_count = 0 def __rich_repr__(self) -> rich.repr.Result: yield "speed", self.speed yield "eta", self.get_eta(monotonic()) @property def first_sample(self) -> tuple[float, float]: """First sample.""" assert self._samples, "Assumes samples not empty" return self._samples[0] @property def last_sample(self) -> tuple[float, float]: """Last sample.""" assert self._samples, "Assumes samples not empty" return self._samples[-1] def reset(self) -> None: """Start ETA calculations from current time.""" del self._samples[:] def add_sample(self, time: float, progress: float) -> None: """Add a new sample. Args: time: Time when sample occurred. progress: Progress ratio (0 is start, 1 is complete). """ if self._samples and self.last_sample[1] > progress: # If progress goes backwards, we need to reset calculations self.reset() self._samples.append((time, progress)) self._add_count += 1 if self._add_count % 100 == 0: # Prune periodically so we don't accumulate vast amounts of samples self._prune() def _prune(self) -> None: """Prune old samples.""" if len(self._samples) <= 10: # Keep at least 10 samples return prune_time = self._samples[-1][0] - self.estimation_period index = bisect.bisect_left(self._samples, (prune_time, 0)) del self._samples[:index] def _get_progress_at(self, time: float) -> tuple[float, float]: """Get the progress at a specific time.""" index = bisect.bisect_left(self._samples, (time, 0)) if index >= len(self._samples): return self.last_sample if index == 0: return self.first_sample # Linearly interpolate progress between two samples time1, progress1 = self._samples[index - 1] time2, progress2 = self._samples[index] factor = (time - time1) / (time2 - time1) intermediate_progress = progress1 + (progress2 - progress1) * factor return time, intermediate_progress @property def speed(self) -> float | None: """The current speed, or `None` if it couldn't be calculated.""" if len(self._samples) < 2: # Need at least 2 samples to calculate speed return None recent_sample_time, progress2 = self.last_sample progress_start_time, progress1 = self._get_progress_at( recent_sample_time - self.estimation_period ) if recent_sample_time - progress_start_time < 1: # Require at least a second span to calculate speed. return None time_delta = recent_sample_time - progress_start_time distance = progress2 - progress1 speed = distance / time_delta if time_delta else 0 return speed def get_eta(self, time: float) -> int | None: """Estimated seconds until completion, or `None` if no estimate can be made. Args: time: Current time. """ speed = self.speed if not speed: # Not enough samples to guess return None recent_time, recent_progress = self.last_sample remaining = 1.0 - recent_progress if remaining <= 0: # Complete return 0 # The bar is not complete, so we will extrapolate progress # This will give us a countdown, even with no samples time_since_sample = min(self.max_extrapolate, time - recent_time) extrapolate_progress = speed * time_since_sample # We don't want to extrapolate all the way to 0, as that would erroneously suggest it is finished eta = max(1.0, (remaining - extrapolate_progress) / speed) return ceil(eta)