import os import re import uuid import shutil from datetime import datetime from typing import Optional import chainlit as cl import ollama import fitz # PyMuPDF from qdrant_client import AsyncQdrantClient from qdrant_client.models import PointStruct, Distance, VectorParams from chainlit.data.sql_alchemy import SQLAlchemyDataLayer # === CONFIGURAZIONE === DATABASE_URL = os.getenv("DATABASE_URL", "postgresql+asyncpg://ai_user:secure_password_here@postgres:5432/ai_station") OLLAMA_URL = os.getenv("OLLAMA_URL", "http://192.168.1.243:11434") QDRANT_URL = os.getenv("QDRANT_URL", "http://qdrant:6333") # === INIZIALIZZAZIONE DATA LAYER === try: data_layer = SQLAlchemyDataLayer(conninfo=DATABASE_URL) cl.data_layer = data_layer print("✅ SQLAlchemyDataLayer initialized successfully") except Exception as e: print(f"❌ Failed to initialize data layer: {e}") cl.data_layer = None WORKSPACES_DIR = "./workspaces" USER_ROLE = "admin" # === UTILITY FUNCTIONS === def create_workspace(user_role: str): """Crea directory workspace se non esiste""" workspace_path = os.path.join(WORKSPACES_DIR, user_role) os.makedirs(workspace_path, exist_ok=True) return workspace_path def save_code_to_file(code: str, user_role: str) -> str: """Salva blocco codice come file .py""" timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") file_name = f"code_{timestamp}.py" file_path = os.path.join(WORKSPACES_DIR, user_role, file_name) with open(file_path, "w", encoding="utf-8") as f: f.write(code) return file_path def extract_text_from_pdf(pdf_path: str) -> str: """Estrae testo da PDF usando PyMuPDF""" try: doc = fitz.open(pdf_path) text_parts = [] for page_num in range(len(doc)): page = doc[page_num] text = page.get_text() text_parts.append(f"--- Pagina {page_num + 1} ---\n{text}\n") doc.close() return "\n".join(text_parts) except Exception as e: print(f"❌ Errore estrazione PDF: {e}") return "" # === QDRANT FUNCTIONS === async def get_qdrant_client() -> AsyncQdrantClient: """Connessione a Qdrant""" client = AsyncQdrantClient(url=QDRANT_URL) collection_name = "documents" # Crea collection se non esiste if not await client.collection_exists(collection_name): await client.create_collection( collection_name=collection_name, vectors_config=VectorParams(size=768, distance=Distance.COSINE) ) return client async def get_embeddings(text: str) -> list: """Genera embeddings con Ollama""" client = ollama.Client(host=OLLAMA_URL) # Limita lunghezza per evitare errori max_length = 2000 if len(text) > max_length: text = text[:max_length] try: response = client.embed(model='nomic-embed-text', input=text) if 'embeddings' in response: return response['embeddings'][0] return response.get('embedding', []) except Exception as e: print(f"❌ Errore Embedding: {e}") return [] async def index_document(file_name: str, content: str) -> bool: """Indicizza documento su Qdrant""" try: # Suddividi documento lungo in chunks chunks = chunk_text(content, max_length=1500) qdrant_client = await get_qdrant_client() points = [] for i, chunk in enumerate(chunks): embeddings = await get_embeddings(chunk) if not embeddings: continue point_id = str(uuid.uuid4()) point = PointStruct( id=point_id, vector=embeddings, payload={ "file_name": file_name, "content": chunk, "chunk_index": i, "total_chunks": len(chunks), "indexed_at": datetime.now().isoformat() } ) points.append(point) if points: await qdrant_client.upsert(collection_name="documents", points=points) return True return False except Exception as e: print(f"❌ Errore indicizzazione: {e}") return False def chunk_text(text: str, max_length: int = 1500, overlap: int = 200) -> list: """Divide testo in chunks con overlap""" if len(text) <= max_length: return [text] chunks = [] start = 0 while start < len(text): end = start + max_length # Cerca l'ultimo punto/newline prima del limite if end < len(text): last_period = text.rfind('.', start, end) last_newline = text.rfind('\n', start, end) split_point = max(last_period, last_newline) if split_point > start: end = split_point + 1 chunks.append(text[start:end].strip()) start = end - overlap # Overlap per continuità return chunks async def search_qdrant(query_text: str, limit: int = 5) -> str: """Ricerca documenti rilevanti""" try: qdrant_client = await get_qdrant_client() query_embedding = await get_embeddings(query_text) if not query_embedding: return "" search_result = await qdrant_client.query_points( collection_name="documents", query=query_embedding, limit=limit ) contexts = [] seen_files = set() for hit in search_result.points: if hit.payload: file_name = hit.payload.get('file_name', 'Unknown') content = hit.payload.get('content', '') chunk_idx = hit.payload.get('chunk_index', 0) score = hit.score if hasattr(hit, 'score') else 0 # Evita duplicati dello stesso file file_key = f"{file_name}_{chunk_idx}" if file_key not in seen_files: seen_files.add(file_key) contexts.append( f"📄 **{file_name}** (chunk {chunk_idx+1}, score: {score:.2f})\n" f"```\n{content[:600]}...\n```" ) return "\n\n".join(contexts) if contexts else "" except Exception as e: print(f"❌ Errore ricerca Qdrant: {e}") return "" # === CHAINLIT HANDLERS === @cl.on_chat_start async def on_chat_start(): """Inizializzazione chat""" create_workspace(USER_ROLE) # Imposta variabili sessione cl.user_session.set("role", USER_ROLE) # Verifica persistenza persistence_status = "✅ Attiva" if cl.data_layer else "⚠️ Disattivata" await cl.Message( content=f"🚀 **AI Station Ready** - Workspace: `{USER_ROLE}`\n\n" f"📤 Upload **PDF** o **.txt** per indicizzarli nel RAG\n" f"💾 Persistenza conversazioni: {persistence_status}\n" f"🤖 Modello: `qwen2.5-coder:7b` @ {OLLAMA_URL}\n\n" f"💡 **Supporto PDF attivo**: Carica fatture, F24, dichiarazioni fiscali!" ).send() @cl.on_message async def on_message(message: cl.Message): """Gestione messaggi utente""" user_role = cl.user_session.get("role", "guest") try: # === STEP 1: Gestione Upload === if message.elements: await handle_file_uploads(message.elements, user_role) # === STEP 2: RAG Search === context_text = await search_qdrant(message.content, limit=5) # === STEP 3: Preparazione Prompt === messages = [] if context_text: system_prompt = ( "Sei un assistente AI esperto in analisi documentale e fiscale. " "Usa ESCLUSIVAMENTE il seguente contesto per rispondere. " "Se la risposta non è nel contesto, dillo chiaramente.\n\n" f"**CONTESTO:**\n{context_text}" ) messages.append({"role": "system", "content": system_prompt}) messages.append({"role": "user", "content": message.content}) # === STEP 4: Chiamata Ollama con Streaming === client = ollama.Client(host=OLLAMA_URL) msg = cl.Message(content="") await msg.send() stream = client.chat( model='qwen2.5-coder:7b', messages=messages, stream=True ) full_response = "" for chunk in stream: content = chunk['message']['content'] full_response += content await msg.stream_token(content) await msg.update() # === STEP 5: Estrai e Salva Codice === code_blocks = re.findall(r"```python\n(.*?)```", full_response, re.DOTALL) if code_blocks: elements = [] for code in code_blocks: file_path = save_code_to_file(code.strip(), user_role) elements.append( cl.File( name=os.path.basename(file_path), path=file_path, display="inline" ) ) await cl.Message( content=f"💾 Codice salvato in `{user_role}/`", elements=elements ).send() except Exception as e: await cl.Message(content=f"❌ **Errore:** {str(e)}").send() async def handle_file_uploads(elements, user_role: str): """Gestisce upload e indicizzazione file (TXT e PDF)""" for element in elements: try: # Salva file dest_path = os.path.join(WORKSPACES_DIR, user_role, element.name) shutil.copy(element.path, dest_path) content = None # Estrai testo in base al tipo di file if element.name.lower().endswith('.pdf'): await cl.Message(content=f"📄 Elaborazione PDF **{element.name}**...").send() content = extract_text_from_pdf(dest_path) if not content: await cl.Message( content=f"⚠️ **{element.name}**: PDF vuoto o non leggibile" ).send() continue elif element.name.lower().endswith('.txt'): with open(dest_path, 'r', encoding='utf-8') as f: content = f.read() else: await cl.Message( content=f"📁 **{element.name}** salvato (supportati: .pdf, .txt)" ).send() continue # Indicizza su Qdrant if content: success = await index_document(element.name, content) if success: word_count = len(content.split()) await cl.Message( content=f"✅ **{element.name}** indicizzato in Qdrant\n" f"📊 Parole estratte: {word_count:,}" ).send() else: await cl.Message( content=f"⚠️ Errore indicizzazione **{element.name}**" ).send() except Exception as e: await cl.Message( content=f"❌ Errore con **{element.name}**: {str(e)}" ).send()