ai-station/app.py

162 lines
5.6 KiB
Python

import os
import chainlit as cl
import re
from datetime import datetime
import shutil
import uuid
import ollama
from qdrant_client import QdrantClient, models
# --- CONFIGURAZIONE ---
USER_ROLES = {
'moglie@esempio.com': 'business',
'ingegnere@esempio.com': 'engineering',
'architetto@esempio.com': 'architecture',
'admin@esempio.com': 'admin'
}
WORKSPACES_DIR = "./workspaces"
# URL Config
OLLAMA_URL = os.getenv('OLLAMA_API_BASE', 'http://192.168.1.243:11434')
QDRANT_URL = "http://qdrant:6333" # Nome del servizio nel docker-compose
# Client Globali
aclient = ollama.AsyncClient(host=OLLAMA_URL) # Per la chat (veloce)
# Client sincrono per embedding (più stabile per operazioni batch)
embed_client = ollama.Client(host=OLLAMA_URL)
# --- FUNZIONI UTILITY ---
def create_workspace(user_role):
path = os.path.join(WORKSPACES_DIR, user_role)
os.makedirs(path, exist_ok=True)
def save_code_to_file(code, user_role):
timestamp = datetime.now().strftime("%Y%m%d%H%M%S")
file_name = f"code_{timestamp}.py"
file_path = os.path.join(WORKSPACES_DIR, user_role, file_name)
with open(file_path, "w", encoding="utf-8") as file:
file.write(code)
return file_path
def get_qdrant_client():
return QdrantClient(url=QDRANT_URL)
def ensure_collection(client):
try:
client.get_collection("documents")
except:
client.create_collection(
collection_name="documents",
vectors_config=models.VectorParams(size=768, distance=models.Distance.COSINE)
)
def get_embeddings(text):
# Taglia il testo se troppo lungo per evitare errori (max safe context)
text = text[:8000]
response = embed_client.embed(model='nomic-embed-text', input=text)
# Gestisce diversi formati di risposta delle versioni Ollama
if 'embeddings' in response:
return response['embeddings'][0]
return response['embedding']
# --- LOGICA CHAT ---
@cl.on_chat_start
async def chat_start():
user_email = "admin@esempio.com" # In prod, prendilo dagli header/auth
user_role = USER_ROLES.get(user_email, 'guest')
create_workspace(user_role)
cl.user_session.set("history", [])
cl.user_session.set("role", user_role)
# Inizializza Qdrant all'avvio
try:
q_client = get_qdrant_client()
ensure_collection(q_client)
status_msg = "✅ System ready. Qdrant connected."
except Exception as e:
status_msg = f"⚠️ System ready, but Qdrant error: {e}"
await cl.Message(content=f"Welcome {user_role}! {status_msg}").send()
@cl.on_message
async def message(message: cl.Message):
user_role = cl.user_session.get("role", 'guest')
history = cl.user_session.get("history", [])
# 1. GESTIONE FILE CARICATI (RAG)
if message.elements:
processing_msg = cl.Message(content="⚙️ Elaborazione file in corso...")
await processing_msg.send()
q_client = get_qdrant_client()
uploaded_files = []
for element in message.elements:
# Salva su disco
dest_path = os.path.join(WORKSPACES_DIR, user_role, element.name)
shutil.copyfile(element.path, dest_path)
uploaded_files.append(element.name)
# Se è testo, indicizza su Qdrant
if element.name.endswith('.txt') or element.name.endswith('.md') or element.name.endswith('.py'):
try:
with open(dest_path, 'r', encoding='utf-8') as f:
content = f.read()
vector = get_embeddings(content)
point_id = str(uuid.uuid4())
q_client.upsert(
collection_name="documents",
points=[models.PointStruct(
id=point_id,
vector=vector,
payload={"filename": element.name, "text": content[:500]} # Salviamo un'anteprima
)]
)
except Exception as e:
await cl.Message(content=f"❌ Errore indicizzazione {element.name}: {e}").send()
await processing_msg.remove()
await cl.Message(content=f"📂 File salvati e indicizzati: {', '.join(uploaded_files)}").send()
# 2. AGGIORNA STORIA E CHAT
history.append({"role": "user", "content": message.content})
msg = cl.Message(content="")
await msg.send()
full_response = ""
# Streaming della risposta
try:
async for part in await aclient.chat(model='qwen2.5-coder:7b', messages=history, stream=True):
token = part['message']['content']
full_response += token
await msg.stream_token(token)
await msg.update()
# 3. ESTRAZIONE CODICE (Salvataggio automatico)
code_blocks = re.findall(r"```python(.*?)```", full_response, re.DOTALL)
if code_blocks:
files_generated = []
for code in code_blocks:
code = code.strip()
if code:
path = save_code_to_file(code, user_role)
files_generated.append(cl.File(name=os.path.basename(path), path=path))
if files_generated:
await cl.Message(content="💾 Ho estratto il codice per te:", elements=files_generated).send()
# Aggiorna storia
history.append({"role": "assistant", "content": full_response})
cl.user_session.set("history", history)
except Exception as e:
await cl.Message(content=f"❌ Errore generazione AI: {e}").send()