210 lines
7.6 KiB
Python
210 lines
7.6 KiB
Python
import os
|
|
import chainlit as cl
|
|
import re
|
|
from datetime import datetime
|
|
import shutil
|
|
import uuid
|
|
import ollama
|
|
from qdrant_client import AsyncQdrantClient
|
|
from qdrant_client.models import PointStruct, Distance, VectorParams
|
|
from chainlit.data.sql_alchemy import SQLAlchemyDataLayer
|
|
|
|
# --- CONFIGURAZIONE DATABASE (PostgreSQL) ---
|
|
# Assicurati che user/password coincidano con il tuo docker-compose.yml
|
|
# Sintassi: postgresql+asyncpg://user:password@host:port/dbname
|
|
DATABASE_URL = "postgresql+asyncpg://user:password@postgres:5432/ai_station"
|
|
|
|
# Attiviamo il salvataggio su DB
|
|
cl.data_layer = SQLAlchemyDataLayer(url=DATABASE_URL)
|
|
# -
|
|
|
|
# --- CONFIGURAZIONE HARD-CODED ---
|
|
OLLAMA_URL = "http://192.168.1.243:11434"
|
|
# ---------------------------------
|
|
|
|
USER_ROLES = {
|
|
'moglie@esempio.com': 'business',
|
|
'ingegnere@esempio.com': 'engineering',
|
|
'architetto@esempio.com': 'architecture',
|
|
'admin@esempio.com': 'admin'
|
|
}
|
|
|
|
WORKSPACES_DIR = "./workspaces"
|
|
|
|
def create_workspace(user_role):
|
|
workspace_path = os.path.join(WORKSPACES_DIR, user_role)
|
|
if not os.path.exists(workspace_path):
|
|
os.makedirs(workspace_path)
|
|
|
|
def save_code_to_file(code, user_role):
|
|
timestamp = datetime.now().strftime("%Y%m%d%H%M%S")
|
|
file_name = f"code_{timestamp}.py"
|
|
file_path = os.path.join(WORKSPACES_DIR, user_role, file_name)
|
|
|
|
with open(file_path, "w") as file:
|
|
file.write(code)
|
|
|
|
return file_path
|
|
|
|
def limit_history(history):
|
|
if len(history) > 20:
|
|
history = history[-20:]
|
|
return history
|
|
|
|
async def connect_to_qdrant():
|
|
client = AsyncQdrantClient(url="http://qdrant:6333")
|
|
collection_name = "documents"
|
|
|
|
# Check if collection exists
|
|
if not await client.collection_exists(collection_name):
|
|
await client.create_collection(
|
|
collection_name=collection_name,
|
|
vectors_config=VectorParams(size=768, distance=Distance.COSINE)
|
|
)
|
|
|
|
return client
|
|
|
|
async def get_embeddings(text):
|
|
client = ollama.Client(host=OLLAMA_URL)
|
|
|
|
# Limite di sicurezza per evitare errori 500 su Ollama
|
|
limit = 2000
|
|
if len(text) > limit:
|
|
text = text[:limit]
|
|
|
|
try:
|
|
response = client.embed(model='nomic-embed-text', input=text)
|
|
if 'embeddings' in response:
|
|
return response['embeddings'][0]
|
|
return response.get('embedding')
|
|
except Exception as e:
|
|
print(f"Errore Embedding: {e}")
|
|
return []
|
|
|
|
async def search_qdrant(query_text, user_role):
|
|
"""Cerca documenti pertinenti su Qdrant"""
|
|
try:
|
|
qdrant_client = await connect_to_qdrant()
|
|
query_embedding = await get_embeddings(query_text)
|
|
|
|
if not query_embedding:
|
|
return ""
|
|
|
|
# Usa query_points (nuova API per AsyncClient)
|
|
search_result = await qdrant_client.query_points(
|
|
collection_name="documents",
|
|
query=query_embedding,
|
|
limit=3
|
|
)
|
|
|
|
hits = search_result.points
|
|
contexts = []
|
|
if hits:
|
|
for hit in hits:
|
|
try:
|
|
if hit.payload:
|
|
# --- FIX IMPORTANTE: Recupera il contenuto reale ---
|
|
nome_file = hit.payload.get('file_name', 'Sconosciuto')
|
|
contenuto = hit.payload.get('content', '')
|
|
|
|
contexts.append(f"--- Documento: {nome_file} ---\n{contenuto}\n----------------")
|
|
except Exception as e:
|
|
print(f"Error parsing hit: {e}")
|
|
|
|
return "\n".join(contexts)
|
|
except Exception as e:
|
|
print(f"Errore ricerca Qdrant: {e}")
|
|
return ""
|
|
|
|
@cl.on_chat_start
|
|
async def chat_start():
|
|
user_email = "admin@esempio.com"
|
|
user_role = USER_ROLES.get(user_email, 'guest')
|
|
|
|
create_workspace(user_role)
|
|
|
|
cl.user_session.set("history", [])
|
|
cl.user_session.set("role", user_role)
|
|
|
|
welcome_msg = f"Welcome, {user_role.capitalize()}!"
|
|
await cl.Message(content=welcome_msg).send()
|
|
|
|
@cl.on_message
|
|
async def message(message):
|
|
user_role = cl.user_session.get("role", 'guest')
|
|
|
|
if not user_role:
|
|
await cl.Message(content="User role not found").send()
|
|
return
|
|
|
|
try:
|
|
client = ollama.Client(host=OLLAMA_URL)
|
|
history = cl.user_session.get("history", [])
|
|
history = limit_history(history)
|
|
|
|
# --- PASSO 1: Gestione Upload e Indexing (PRIMA della ricerca) ---
|
|
if message.elements:
|
|
uploaded_files = []
|
|
for element in message.elements:
|
|
try:
|
|
dest_path = os.path.join(WORKSPACES_DIR, user_role, element.name)
|
|
with open(element.path, 'rb') as src, open(dest_path, 'wb') as dst:
|
|
shutil.copyfileobj(src, dst)
|
|
|
|
if element.name.endswith('.txt'):
|
|
# Encoding utf-8 per sicurezza
|
|
with open(dest_path, 'r', encoding='utf-8') as f:
|
|
content = f.read()
|
|
|
|
embeddings = await get_embeddings(content)
|
|
if embeddings:
|
|
qdrant_client = await connect_to_qdrant()
|
|
point_id = str(uuid.uuid4())
|
|
|
|
# --- FIX IMPORTANTE: Salviamo anche il contenuto nel payload ---
|
|
point = PointStruct(
|
|
id=point_id,
|
|
vector=embeddings,
|
|
payload={
|
|
"file_name": element.name,
|
|
"content": content
|
|
}
|
|
)
|
|
await qdrant_client.upsert(collection_name="documents", points=[point])
|
|
await cl.Message(content=f"Documento '{element.name}' indicizzato.").send()
|
|
|
|
uploaded_files.append(element.name)
|
|
except Exception as e:
|
|
await cl.Message(content=f"Error saving {element.name}: {e}").send()
|
|
|
|
if uploaded_files:
|
|
await cl.Message(content=f"Files saved: {', '.join(uploaded_files)}").send()
|
|
|
|
# --- PASSO 2: Cerca nei documenti ---
|
|
context_text = await search_qdrant(message.content, user_role)
|
|
|
|
if context_text:
|
|
system_prompt = f"Usa esclusivamente il seguente contesto per rispondere alla domanda. Se la risposta non è nel contesto, dillo.\n\nContesto:\n{context_text}"
|
|
history.insert(0, {"role": "system", "content": system_prompt})
|
|
|
|
history.append({"role": "user", "content": message.content})
|
|
|
|
# --- PASSO 3: Chat Generation ---
|
|
response = client.chat(model='qwen2.5-coder:7b', messages=history)
|
|
|
|
# Code Extraction
|
|
code_blocks = re.findall(r"```python(.*?)```", response['message']['content'], re.DOTALL)
|
|
|
|
elements = []
|
|
if code_blocks:
|
|
for code in code_blocks:
|
|
file_path = save_code_to_file(code, user_role)
|
|
elements.append(cl.File(name=os.path.basename(file_path), path=file_path))
|
|
|
|
history.append({"role": "assistant", "content": response['message']['content']})
|
|
cl.user_session.set("history", history)
|
|
|
|
await cl.Message(content=response['message']['content'], elements=elements).send()
|
|
|
|
except Exception as e:
|
|
await cl.Message(content=f"Error: {e}").send() |