- Added PyMuPDF (fitz) for PDF text extraction - Implemented chunking system for large documents - RAG search now works with PDF documents - Added Qdrant vector store for semantic search - Chainlit UI updated with PDF processing indicators |
||
|---|---|---|
| .chainlit | ||
| .venv | ||
| __pycache__ | ||
| workspaces/admin | ||
| .gitignore | ||
| Dockerfile | ||
| Marimo_Multi-User_Hub.md | ||
| PROMPT_V2.md | ||
| README.md | ||
| SPEC.md | ||
| app.py | ||
| chainlit.md | ||
| debugchainlit-app.txt | ||
| debugchanlit-app.txt | ||
| docker-compose.yml | ||
| docker.logs | ||
| dockerignore | ||
| error.log | ||
| init_db.py | ||
| requirements.txt | ||
README.md
text
AI Station - Multi-User AI Hub
Piattaforma AI dockerizzata con RAG (Retrieval-Augmented Generation) per uso familiare e professionale.
Stack Tecnologico
- Frontend/UI: Chainlit 1.3.2
- Vector DB: Qdrant
- Database: PostgreSQL 15
- AI Engine: Ollama (qwen2.5-coder:7b) su RTX A1000
- Reverse Proxy: Nginx Proxy Manager
- SSL: Wildcard *.dffm.it
Architettura
Internet → pfSense (192.168.1.254) ↓ Nginx Proxy (192.168.1.252) → https://ai.dffm.it ↓ AI-SRV (192.168.1.244:8000) → Docker Compose ├── Chainlit App ├── PostgreSQL └── Qdrant ↓ AI-GPU (192.168.1.243:11434) → Ollama + RTX A1000
text
Quick Start
Clone repository git clone https://github.com/TUO_USERNAME/ai-station.git cd ai-station
Configura environment variables cp .env.example .env nano .env
Avvia stack docker compose up -d
Verifica logs docker compose logs -f chainlit-app
text
Accesso
- Locale: http://192.168.1.244:8000
- Remoto: https://ai.dffm.it
Funzionalità Attuali
✅ Chat AI con streaming responses ✅ RAG con upload documenti .txt ✅ Indicizzazione automatica su Qdrant ✅ WebSocket support ✅ Accesso SSL remoto
Roadmap
- Supporto PDF per documenti fiscali
- OAuth2 multi-utente
- UI personalizzate per profili (business/engineering/architecture/admin)
- Integrazione Google Gemini
- Persistenza conversazioni
Requisiti
- Docker & Docker Compose
- 8GB RAM minimo (16GB consigliato)
- Ollama server remoto con GPU
License
MIT